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Figure 1. Event interaction map for a program running on an Intel Core processor on Linux. Each event itself may cause processor cycles, and inhibit (−), enable (+), or modulate (⊗) others.
Abstract
that our measurement setup has a large impact on the results.
Measuring and analyzing the performance of software has More surprisingly, however, they also suggest that the setup reached a high complexity, caused by more advanced pro-can be negligible for certain analysis methods. Furthermore, cessor designs and the intricate interaction between user we found that our setup maintains significantly better per-programs, the operating system, and the processor’s microar-formance under background load conditions, which means arXiv:1811.01412v2 [cs.PF] 20 Nov 2018
chitecture. In this report, we summarize our experience on it can be used to improve high-performance applications.
how performance characteristics of software should be mea-CCS Concepts • Software and its engineering → Soft-sured when running on a Linux operating system and a ware performance;
modern processor. In particular, (1) we provide a general overview about hardware and operating system features Keywords Software performance, Linux, Hardware Coun-that may have a significant impact on timing and explain ters, Microarchitecture, Jitter
their interaction, (2) we identify sources of errors that need to be controlled in order to obtain unbiased measurement 1
Introduction
results, and (3) we propose a measurement setup for Linux Countless performance tests of software are available online to minimize errors. Although not the focus of this report, we in blogs, articles, and so on, but often their significance can describe the measurement process using hardware perfor-be refuted by their measurement setup. Speedups are usu-mance counters, which can faithfully point to performance ally reported in units of time, yet without any introspection bottlenecks on a given processor. Our experiments confirm how exactly the differences came to live. Not only are the
results questionable when the software runs on a different Unit
Properties
machine, but even on identical processors with identical Processor
Intel Core i7-2640M @2.8GHz, dual-core
memory configurations and peripherals, there are many ex-Microarchitecture “Sandy Bridge”, Microcode version 0x25
L1i/d cache
32kB, 8-way, 64B/line, per core
ternal factors that can influence the result. One such factor L2 unified cache
256kB, 8-way, 64B/line, writeback, per core
is the operating system (OS) itself. Different configurations L3 uncore cache
4MB, 16-way, 64B/line, shared between all cores
and usages of OSes might nullify or magnify some effects, TLB
2-level, second level unified, per core
and thus the performance measurements do not necessarily OS
Debian 8.11 GNU/Linux SMP 3.16.51-3
reflect the characteristics of the software that we actually Table 1. System specifications
want to analyze and improve.
In this report, we describe how performance measurements of user software should be conducted, when running taken. The numbers are all based on the following system on a mainline Linux OS and a modern multi-core processor.
penalties, caused by the typical design of CPUs and OSes.
Specifically, we are concerned with real-time measurements Penalties: The various latencies for our system are sum-taken on the real hardware, providing quantitative informa-marized in Tab. 2, and discussed in the following. They are tion like execution time, memory access times and power taken from the processor documentation [12], and extended consumption. We expect that the setup of the OS and hard-by measurements using lmbench [24] and pmbench [32]. The ware have a significant impact on the results, and that a values denoted “best case” stem from the manufacturer doc-proper setup can greatly reduce measurement errors.
umentation. Our measurements show that these values are This document is structured as follows: We start with a also the most frequently observed ones. Note, however, that general survey of microarchitectural and OS elements affect-penalties can (and should) be hidden by out-of-order pro-ing performance in modern processors in Section 2. In the cessing. That is, not every page walk delays computation for next section we list possible sources of measurement errors, 30 cycles.
followed by a proposed measurement setup in Section 4. Finally, we show several examples of how the setup influences Event
Condition
Latency [cycles]
the results, before we conclude this report.
L1 cache hit
best case
4
L2 cache hit
best case
12
2
Microarchitectural and OS Performance
L3 cache hit
best case
26..31
Modulators
DRAM access
best case
≈ 200
branch misprediction most frequent
20
We start by giving an overview on hardware and OS fea-TLB miss
2nd-level TLB hit
7
tures and how they influence the performance of software.
page walk
most frequent
≈30
In essence, this section is an elaboration of the interactions minor page fault
most frequent
≈1,000 .. 4,000
depicted in Figure 1. The well-informed reader might di-major page fault
most frequent
≈260k .. 560k
rectly proceed with the subsequent section, which identifies context switch
best case
≈3,400
sources of measurement errors based on the details presented Table 2. Penalties for system in Table 1
here.
Although we try to keep the explanations generic, it would be impractical to make only statements that cover any con-Software Performance: In this report, we look at software ceivable processor. The details are therefore given for an In-performance, mainly from a timing point of view. Specifically, tel 2nd generation CoreTM x86-64 microarchitecture (“Sandy for the execution time of the process, we only consider the Bridge”). This is a pipelined, four-width superscalar multi-time where the processor executes instructions on behalf of core processor, with out-of-order processing, speculative the process (including kernel code and stalls), but not sleep-execution, a multi-level cache hierarchy, prefetching and ing or waiting states, since the latter are either voluntary or memory management unit (MMU). This kind of processor depend on the execution context and not the program itself.
is currently used in high-end consumer computers, and has well-proven architectural features that we expect to see in 2.1
Microarchitecture
embedded processors in the coming years; many of them As an overview about the features discussed next, consider are already available in ARM SoCs [3]. The details of our the microarchitectural block diagram shown in Fig.2.
machine are summarized in Tab. 1. As operating system (OS) we consider Linux, specifically in an SMP configuration.
2.1.1
Number of Cycles and Instructions
Along this report, we will give some numbers to illustrate As a single number indicating program speedup, we first the magnitude of some effects. These numbers are given to look at the number of processor cycles spent on execution.
the best of our knowledge, the best available vendor docu-Lower is better. The number of clock cycles is primarily mentation, and supported by measurements that we have driven by the instructions being executed, whereas the exact 2
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Figure 2. Microarchitecture of Intel Sandy Bridge as example of a superscalar out-of-order processor with caches, branch predictor and prefetcher. Taken from [4], and checked for consistency against manufacturer datasheets [12].
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relationship is defined by the implementation of the microar-example, an arithmetic division can take several cycles to chitecture. The relationship is usually nontrivial and not complete, meanwhile successor instructions can be executed, fully documented, therefore we have forgone indicating the up to the point where the result of the division is required.
relative influence of events of clock cycles in Fig.1. We will Similarly, memory access latencies can be hidden. This is provide typical numbers in the following descriptions, as far one of the primary reasons, while it is nontrivial to predict as they are known.
the number of clock cycles that a certain event slows down If we count both the number of retired instructions and a program.
processor cycles, we can compute the ratio instructions per As a side effect, such out-of-order (OoO) processing en-cycle (IPC). While often used as a first performance indicator, ables superscalarity. By having more than one instance of this figure is highly program-specific, and not helpful for each functional unit (e.g., several ALUs or FPUs), it becomes judging our software. For example, a program may execute possible to execute several instructions in parallel. Thus, OoO
faster than before although the IPC has dropped, simply by processors often issue multiple instructions at the same clock virtue of a reduced number of instructions.
cycle; for our machine, four uops are issued simultaneously, Micro-operations (uops): Some processors split instruc-thus the maximum IPC is four.
tions into multiple smaller operations [3, 12], which pro-An algorithm for OoO was proposed by Robert Tomasulo vides more possibilities for out-of-order processing [8]. On in 1967 [28], and today’s out-of-order processor implemen-such targets, it is more meaningful to measure uops instead tations still follow the same concept [8, 12]. The OoO im-of instructions, since a single instruction may become a plementation is often called execution engine, and for the variable-length series of uops. Some, usually more complex purpose of our performance measurements, the following instructions, may even invoke Microcode.
constituents must be considered: 1. Register Renaming and Microcode: On some processors, instructions are not hard-2. Scheduler.
wired but interpreted, to be broken down to hardwired ma-Register Renaming: Register names used by the compiler chine code during execution. This abstraction layer can incur are those defined by the instruction set architecture (ISA), a slowdown, but it allows upgrading processors during their called architectural registers. Due to the limited number of lifetime, e.g., to fix processor errata. On x86, microcode is registers, the compiler might be forced to re-use registers only used for few complex instructions; specifically, only for for computations that are otherwise not related, creating instructions generating more than four uops in our proces-false data dependencies. However, actual implementations sor [8]. The performance can be impacted in two ways: First, of the ISA may have more physical registers than architec-switching between the regular instruction stream and Mi-tural ones. Therefore, the first step is to map architectural to crocode may incur a penalty, and second, Microcode generat-physical registers, while resolving some false dependencies.
ing a lot of uops may be limited by the frontend bandwidth.
This renaming process therefore improves superscalar and Uops Cache: Instructions are decoded into uops by a hard-OoO processing [8].
ware circuit that can be limited in throughput, causing a Scheduler: The renamed operations now enter the main bottleneck if the average instruction length exceeds its ca-core of OoO processing, the scheduler. Here operations are pacity. Some processors add a cache to store decoded uops, queued up for execution units in reservation stations, and in an attempt to alleviate this problem [8].
will be held there until all operands become available. When this becomes the case, the operation is started on the execu-2.1.2
Pipelining
tion unit. As soon as it completes, results are propagated to Instead of processing one instruction or uop after another, all subscribers (e.g., registers or reservation station entries processing is often is temporally overlapping to reduce ex-waiting for a result), and the operation is forwarded from the ecution time, called pipelining. For example, while one in-reservation station to the Reorder Buffer. From here, most struction is being executed, the subsequent one can already schedulers also take care of retiring the instructions in their be decoded to uops in parallel, and meanwhile the uops original order. A bottleneck may occur when the scheduler from the previous instruction can be retired. Today it is very stalls execution due to lack of free reservation stations.
rare to find processors or even microcontrollers that do not implement some form of pipelining.
2.1.4
Branch Mispredictions
Many microarchitectures perform some kind of branch pre-2.1.3
Out-of-Order and Superscalar Processing
diction, to hide the latency for loading the instructions and Modern processors implement dynamic scheduling of in-data after a branch [3, 8]. Predictions for both the outcome structions [3, 8]. That is, the order in which instructions are of two-way branches, and the (possibly multi-way) target executed, may deviate from the original order of the instruc-address of indirect branches, are being made by the branch tion stream given by the program counter. This enables the prediction unit.
processor to hide various processing latencies, by perform-If the branch is incorrectly predicted, then the pipeline and ing other work while waiting for an instruction to finish. For other resources must be flushed, which means there is a time 4
penalty to fetch and decode the correct instructions. The data in the faster cache, before accessing the slow memory.
magnitude of the penalty primarily depends on the pipeline If we find the data, called a cache hit, we have circumvented depth. In case of Sandy Bridge, the penalty for flushing and waiting for the slow memory. If the cache does not contain resuming execution is about 20 cycles [8, 12].
the data, called a cache miss, we have to pay the penalty for accessing the slow memory (usually DRAM). After this, the 2.1.5
Speculative Execution
data is placed in the cache for future reference.
The time window between branch prediction and learning Since caches have to be small to be fast, there are inevitably the actual branch outcome is spent with speculative execution.
situations when data is not in the cache, and needs to be That is, the processor continues the control flow at the as-loaded from slower memory. Even if we were able to per-sumed branch target, and buffers the results until the actual fectly predict what data (including instructions) is needed, branch target becomes known. Whenever the prediction was then there are still compulsory misses on first access. As a incorrect, it flushes the pipeline as described above. If the result, execution can be slowed down by one or two orders prediction was correct, the speculatively executed instruc-of magnitude even with fast caches and very high hit ratio.
tions are allowed to be released from the buffer (“retire”), For example, let us assume each instruction takes one cycle, and no time was lost waiting for the branch outcome.
and that each cache miss costs five extra cycles. Then, even There is one lesser known side effect, however, dubbed with p = 95% hit ratio, a program with X instructions would pollution in Fig.1. Although instructions executed during take X + X (1 − p)5 = 1.25X cycles, i.e., experience a 25%
mis-speculation are not retired, they can still cause changes slowdown. Measuring cache behavior is therefore important.
in cache and buffer states. These effects are indirect cost of Victim Caches: These are small and fully associative caches, branch mispredictions, which manifest themselves during holding items evicted from a larger, not fully-associative one.
later execution. These effects have recently been exploited Each miss in the large cache is first looked up in the victim in the Spectre and Meltdown vulnerabilities [19].
cache, before the slower memory is consulted. This masks Last but not least, even perfect speculation might become miss times for temporally close conflict misses. From a prac-a performance bottleneck in some cases. All speculatively tical point of view, the victim cache need not be considered taken branches are stored in the branch order buffer (BOB) separately; instead, a victim hit can be seen as a hit in the until they are confirmed. However, too many speculations in faster cache. Vice versa, a victim miss can be seen as a hit in a short time window might cause the BOB to fill up, which the next-slower memory or cache.
in turn stops the issue of new uops [12].
Hierarchy: As most modern processors, our machine uses a hierarchy of caches. That is, there are three caches in a 2.1.6
Machine Clears
cascade (three “levels”) before the slower DRAM is accessed.
When multiple threads can run truly in parallel (as on SMP
The first level (L1) is the fastest/smallest and separate for systems and especially with OoO processing), the ordering of data (L1d) and instruction (L1i), see Tables 1 and 2. Leaving memory accesses must be monitored and ensured. If the CPU
aside special architectural tricks, this is the only level that detects that accesses complete differently to program order, can be accessed directly by the CPU. Higher levels (L2, L3) a machine clear is performed. This entails undoing some are larger and slower, and usually unified. Depending on the operations, flushing the pipeline, and re-starting with the processor, some caches can be shared with peripherals or correct operands [12]. The cost is comparable to a branch other processors.
misprediction. Further causes for machine clears are self-modifying code and illegal AVX addresses.
2.1.8
DRAM Access
The next-larger memory after the cache hierarchy, is Direct 2.1.7
Cache Hierarchy and Misses
Random Access Memory (DRAM). Conceptually, the cache Although memory access is fast these days, it can still be or-hierarchy acts as a frontend and buffer to DRAM accesses.
ders of magnitudes slower than the processor, which has be-Only if the lookup of data or instructions missed at all levels come known as the Memory Wall [31]. Consider the penalty in the cache hierarchy (Fig.1 “higher-level cache miss”; not for a major page fault (disk access) shown in Tab. 2: At least necessarily sequentially, though), then the DRAM is confive orders of magnitude lie between the processor and the sulted. Accesses to DRAM are typically 100 times slower disk access, although we use a relatively fast Solid State than the CPU, thus the penalty missing the entire cache hier-Disk (SSD). Caching is the omnipresent approach to coun-archy becomes steep. Even worse, DRAM is often accessed teract this issue, by preloading or latching all data in faster, via the Northbridge, possibly suffering contention with other smaller memories, and exploiting the principle of locality.
CPUs and DMA transfers [7].
That is, data that has been recently accessed, is likely to be accessed soon in the future again. It thus makes sense to 2.1.9
Hardware Data Prefetching
buffer recently used data in caches. Every time a data item To further reduce access times to slow memory, many pro-is requested (“data access” in Fig.1), we check for the desired cessors have a data prefetcher circuit, which predicts future 5
data accesses and actively pre-loads the data into caches.
data reference (see Fig.1), thus there is an obvious incen-Most prefetchers are triggered by certain access patterns in tive to minimize delays. Therefore, in practice the address cache misses [7]. Some newer processors may even cross translation process is very intricate and specific to the mi-page boundaries and thus influence the TLB [12, §2.4.7]. In croarchitecture. An in-depth description can be found in [7].
summary, prefetch events both depend on and influence L1d Usually a hardware unit called Memory Management Unit cache events, as shown in Fig.1.
(MMU) is responisble for the address translation. To ensure translations do not stall execution, most MMUs have 2.1.10
ISA Extensions, Streaming/Vector/SIMD
their own caches, called Translation-look-aside buffers (TLBs), Processors may extend the ISA with instructions applying which hold the most recently translated addresses. In case the same operation on multiple data items (vectors, single-the buffers do not provide the needed translation (TLB miss), instruction-multiple data). Examples are the extensions AVX, then a slow search in memory has to be conducted, called SSE, MMX on Intel and AMD, and NEON on ARM proces-a page walk, see Fig.1. On x86 machines, this means that sors. Using these can greatly speed up certain calculations, a dedicated hardware circuit starts looking for page table but switching to these modes may also cause extra penal-entries in memory, which incurs a penalty depending on ties [8, §9.1.2]. In general, any switch between ISA modes or memory access latency. For other architectures, like some extensions may cause extra penalties.
PowerPC, this might be done in software, and thus is even slower. In case the information was found in the page table, 2.1.11
Direct Memory Access (DMA)
the TLB is updated and execution resumes. Otherwise, the Accessing secondary storage, such as hard drives, but also operating system is signaled a page fault, and has to decide traffic from network cards, usually takes place via DMA, whether the access is allowed. If so, the OS updates the page which enables peripherals to exchange data directly with table and TLB with the requested translation, and possibly the DRAM. As mentioned earlier, this might lead to bus bring missing data to the DRAM. The cost for virtual address contention and slow down DRAM accesses for the processor.
translation therefore is consisting of cycles spent in TLB
lookup (hardware), plus page walk cycles (often hardware), 2.1.12
Cache Coherency Protocols and ring bus
plus cycles to handle page faults (OS).
Translation-Lookaside-Buffer: TLBs are regularly flushed On multi-core systems, further cache accesses are caused by by the OS, since it is responsible for the coherency between cache coherency protocols, e.g., between the caches of the TLBs and page tables in memory, and that the TLBs do not different cores [7]. It becomes active during core migrations, hold stale translations from a formerly running process. They but also in the presence of data shared between cores.
can either be flushed or selectively updated, depending on 2.1.13
Neglected Features
the OS and hardware capabilities. Accesses after a flush are TLB misses, therefore flushes degrade performance. In the There are many peculiarities to each microarchitecture. We x86 architecture, there furthermore exists the case of TLB
have omitted many of such details, in an attempt to focus on shootdown. This stems from the need to have consistent TLB
those features prevalent in most processors. Of course, these entries between multiple cores in the presence of sharing.
details can be important for the performance, and a careful Since x86 does not have a coherency protocol in place, TLB
study of the microarchitecture is required to see which need contradictions between cores are avoided by triggering flush-to be measured. Omissions include instruction and uop fu-ing in hardware. Last but not least, TLB and cache access sion, loopback buffers, register stalls, exhaustion of execution can be executed in parallel, to reduce latency.
ports, cache bank conflicts, misaligned memory access, and Page Walks: Examining the page tables in memory incurs a store forwarding stalls. These are not considered to have a penalty that depends on whether the tables are cached (L1d, large or systematic performance impact on Sandy Bridge [8].
L2, L3), or whether the slow DRAM needs to be consulted.
On our machine, a typical page walk costs between 20 and 2.2
Microarchitecture and OS Interaction
60 cycles. In an extreme case (“TLB trashing”), this could 2.2.1
Virtual Memory and Paging
happen for every instruction, and thus become very expen-Virtual Addressing is common in larger general-purpose sive. On some microarchitectures, as in Intel Sandy Bridge, and application processors, and is done for a variety of rea-page walks go through the caching hierarchy. That is, page sons, chief among which are process isolation and provision tables are buffered in L1d and below, and thus caches can be of a contiguous address space from the process’ point of modified by page walks. Consequently, caching behavior and view. However, it also enables paging, which helps to sig-TLB misses cannot always be separated, even in the absence nificantly mitigate the latency of accessing slow secondary of page faults. Additionally, it has recently been disclosed storage, such as hard drives. Unfortunately, Virtual Address-that Intel processors speculatively work on possibly invalid ing comes with a performance penalty that can vary highly.
Translation needs to be performed for every instruction and 6
cache entries in parallel to page walks (see “L1TF” vulnera-and 4,096 cycles, again coinciding with the median. Note bility [6]). It can therefore be assumed that even the latency that this includes lazy allocations. The numbers are consis-of page walks is partially hidden.
tent with recent measurements of Torvalds on the successor Page Faults: If a translation cannot be found in the page microarchitecture Haswell [29].
table, a page fault is signalled from the MMU to the OS (Fig.1
bottom). There are three fundamental types of page faults: 2.2.2
Context Switch
1. Invalid page fault, 2. major page fault, or 3. minor page Switching between processes happens frequently (discussed fault.
later in Section 2.2.6), and is an expensive operation that Invalid page faults are those caused by an attempt to ac-influences the TLB and caches, see Fig.1.
cess addresses that are beyond the process’ address space, or Besides executing a number of instructions to save and where privileges are insufficient. An example are segmenta-load hardware registers, stack pointer and PC of suspended tion faults. We do not discuss them further, since they are and waking processes, the pipeline is flushed, and the TLB
pathological events pointing to faulty software.
must also be updated [21]. On most Linux versions the TLB
Major page faults require disk access, which is orders update takes the form of a flush, accompanied by switch-of magnitude slower than the effects we are trying to ob-ing the page table pointer. This can only be avoided with serve here. For our SSD-equipped machine, we used the hardware that supports process context identifiers (PCIDs) pmbench [32] tool and found the most frequent latency for and with newer kernels supporting this feature – such as major faults as between 262 thousand and 524 thousand cy-x86 on Kernel 4.14 onwards [22]. The penalty for such TLB
cles (coinciding with the median), same for both read and invalidation is called the direct cost of a context switch [21].
write accesses. Additionally, the distribution is tail-heavy, However, the CPU caches are also affected, which incurs similar as in [32]. That is, the estimated average is about indirect costs: Because processes share caches among them-one million cycles, due to some accesses exceeding several selves and also with the kernel, the waking process may not dozens of milliseconds.
find its data in the caches as had been left when it got sus-Closely related to page faults, Linux implements a page cache: pended, and experience cache misses. This effect magnifies the virtual memory buffers data blocks of recently used files.
with growing working set size [21]. Context switches can When files are read (e.g., via fread or mmap), then access is by happen involuntarily due to interrupts, or voluntarily due to default buffered via the page cache. Therefore, if a program system calls (both discussed later). Using lmbench, we found is executed a second time and there was sufficient memory, that context switches on our system take at least 3,400 cycles, there ideally are no major page faults due to file access. To with a frequent value around 30,000 cycles. Note that this further reduce first-time access latency, the Linux kernel number would increase if a core migration happens at the proactively reads file data from disk before it is demanded same time, which is explained next.
(“read ahead”), which is no longer counted as major page fault. Finally, if DRAM is exhausted and swapping is enabled, 2.2.3
Core Migrations and Load Balancing
unused pages are temporarily written to secondary storage The OS (and the hardware, if Hyperthreading is enabled) may (“swapped out”). When they are needed again, they have to migrate a running process between cores (“core migrations”
be brought back to DRAM, which also causes major page in Fig.1), to balance load or thermal stress. This causes a faults [9].
context switch with additional overhead. The process must Minor page faults are caused by memory allocation with-be stopped, copied to another core’s run queue, cache lines out disk access, but may still be problematic for our mea-are moved to the new core [7], and only then both scheduling surements. The memory can either be immediately allocated, domains are released. Naturally, this requires to run a lot or only reserved (“lazy”). In the latter case, which is the de-of kernel code, which in turn increases chances for events fault case in Linux, the page is only created when the first like branch mispredictions, cache pollution and page walks.
write occurs (“copy-on-write”). This means that the penalty We have observed latencies of beyond 100,000 cycles for of minor page faults consists of two parts: the cost for the migrations, depending on the working set size.
fault handler itself, and the conditional copy-on-write cost.
Measuring the cost of a minor page fault is unequally more 2.2.4
Mode Switch
complicated than major faults. First, the latency is relatively short, resulting in inaccuracy when we try to measure it Switching between user and kernel mode is not a context using software. Tracing kernel functions is one option that switch, and thus has lower overhead. These switches are we have exercised, but it has some non-negligible overhead caused by system calls done by the running program (thus in our kernel version, only giving us an upper bound. Hard-the bidirectional interaction between instructions and mode ware measurements are not possible in this case. The result switches in Fig.1) for which the kernel is supposed to perform is a somewhat wide range for the minor page fault cost. Us-some work on behalf of the calling process. The kernel is ing pmbench, we found that the mode lies between 1,024
then said to be in process context.
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In Linux on x86, these calls involve copying the arguments One special periodic interrupt is the local timer interrupt to registers, triggering a trap (CPU changes to kernel mode), driving the scheduler, also called “scheduling clock ticks”, executing the trap handler (which copies the arguments from and discussed next.
the registers to the kernel stack and then performs its work), and eventually returning to user mode. Depending on the 2.2.6
Scheduler Ticks
processor and OS, the TLB might be invalidated. This is the By default, the Linux scheduler runs periodically, to select case for x86 since the Spectre and Meltdown vulnerabilities in which process is executed on the hardware for the next time 2017, where now kernel page table isolation (KPTI) invalidates slice. This is achieved by a timer interrupt firing typically entries during each mode switch to protect the kernel from every four milliseconds. Considering that interrupts cause attacks, unless the hardware supports PCIDs (see above).
mode switches and possibly context switches (see Fig.1),
Finally, when exiting the kernel mode, a context switch to a running the scheduler itself may unnecessarily suspend our different process might take place.
user task. Luckily, there are two options to configure the Our kernel has KPTI enabled, but no PCID support. We kernel differently, commonly referred to as “tickless” [14]:
created a test program to measure the direct penalty from 1. Dyntick-Idle, enabled by the kernel configuration op-KPTI. We found that the fastest syscall drops from at most 660
tion CONFIG_NO_HZ_IDLE=y, describes a kernel config-cycles down to less than 130 cycles, when KPTI is disabled1.
uration that omits scheduling ticks when there is no Kernel developers have measured large slowdowns as well, task to be executed. While this is often the default for with up to 30% in networking code [5]. That is significant, desktop and embedded systems to save energy, but is and thus needs to be considered during measurements.
not useful for our purpose.
In summary, mode switches also have a direct penalty 2. Adaptive ticks, enabled by kernel configuration option caused by the call overhead, and indirect penalties caused CONFIG_NO_HZ_FULL=y, describes a kernel configura-by TLB and cache effects, depending on kernel version and tion that additionally turns off ticks when there is only processor.
one runnable task, thus preventing unnecessary interruptions. On top of the configuration option, it is 2.2.5
Interrupts
necessary to add a kernel boot parameter specifying Typically, a few dozens of interrupts2 can arrive at any point for which CPUs it shall be applied. RCU calls need to in time. For example, there are thermal interrupts in case the be offloaded to other CPUs.
hardware overheats, and machine check exceptions indicat-Both of these configurations have disadvantages, as well, ing hardware errors in the CPU. Some interrupts cannot be including increased number of instructions to switch to/from avoided, while others can be disabled or redirected to differ-idle mode, and more expensive mode switches [14]. Using ent cores. Interrupts do not directly cause context switches again the program shown in Appendix A, we have found as described above. Instead, the CPU itself saves and restores that mode switch times in our system increase to about 700
very few registers (notably, the PC), and then a mode switch cycles with adaptive ticks and KPTI disabled. Consequently, happens [2], see also Fig.1. After this, the interrupt handler tickless operation may not be beneficial for workloads with must take care of the rest. Specifically, the kernel then is many syscalls, or for those going idle frequently.
running in interrupt context, as opposed to process context, and the work being done here is not attributed to any user 2.2.7
Neglected Features
process.
The most important mechanisms of OS-hardware interaction The interrupt handler itself is supposed to be fast and have been explained. Nevertheless, there are many other must not suspend execution. This is also called the top half.
features and effects that depend on the specific version of Interrupts which require longer-lasting or I/O work to be OS. Some omissions include speculative paging [11], as that done, must defer such work for later processing in a so-called is a recent development not commonly used, yet, and page bottom half [16].
migration between NUMA nodes, since our target is a single Once the top half handler finishes, the OS switches back NUMA node.
to user mode. As explained before, a context switch might happen during this transition. Specifically, if the interrupt 3
Measurement Errors
had deferred some work to a bottom half, then a context switch to a kernel thread might happen at this point in time, This section summarizes features that can create measure-to finish the interrupt work.
ment errors, building on the explanations given before and visualized in Fig.1. By error we subsume all effects that stem from sources other than the software under analysis and, 1This upper bound was measured as the minimum latency over many when not properly controlled, would therefore mislead us in calls of getuid, with the program given in Appendix A. This program had experienced a 3x speedup!
a systematic or random direction. For example, we consider 2see /proc/interrupts
effects caused by other processes running in the background 8
of an operating system as measurement error. Inter alia, they and the processor share the L3 cache on our machine.
share caches with the software under analysis, and thus This means that even different monitor setups can change the caching behavior of our software can look significantly cache miss statistics and bandwidth benchmarks3.
worse if there exists a data-heavy background process.
Table 3 depicts all major sources of measurement errors, 3.1
Short-Living Programs
together with a classification whether they are caused by When an OS is used, there is necessarily an overhead for hardware (HW) or software (SW), their measurable impact, starting and terminating a process. This can become signif-and the time when the effects manifest in the measurements.
icant when we measure the performance of programs that Additional explanations are given in the notes below.
have a short execution time. After all, most developers are Notes for Table 3:
not trying to optimize the OS or its libraries, but their own software. To give a rough number, programs that execute less (a) Only traffic not caused by the software under analysis is than a million instructions should be considered to be too considered an error. Such traffic might be caused by all short, with the specific number being subject to the amount other processes running on the same core, including the of work the OS has to do.
kernel. See process isolation.
As an example, consider the call graph of a program (the (b) If the number of demand data accesses shall be measured, nsichneu from the Mälardalen WCET benchmarks, com-then the prefetcher skews the results, otherwise it is not piled with gcc and -O3) shown in Figure 3a. The user code, considered a source of error. Also, prefetching has the all in a single function (black node in the upper right half), same effect as demand access on caches and TLB, thus it executes about 40,000 instructions. The entire program, from can skew TLB access metrics.
startup to after termination, requires about 150,000 instruc-
(c) Only interrupts not caused and required by the software tions. The OS performs tasks such as dynamic loading (starts under analysis are considered source of errors. Interrupts in upper left corner and spreads about two thirds into the may cause other processes to be scheduled to execute picture), which locates and loads into memory all dynamic bottom halves.
libraries used by the program. The actual user code is exe-
(d) The mode switches themselves are often required to ex-cuted thereafter, and followed by another cascade of calls ecute system calls. But mode switch overhead can be performing cleanup actions. Figure 3b shows the same pro-highly different depending on OS and HW. Therefore, it gram with static linking. The remaining overhead is mainly may or may not contribute a significant error.
from the C library, although this programs does not make (e) Allocators for virtual memory have different characteris-any explicit library calls, as evident from the call graph. In tics. Some may consume significantly more/less memory this example, the user code is only responsible for about 26%
than others, and some may force context switches.
of the processor cycles with dynamic linking, and for 75%
(f) Non-tickless kernels may generate unnecessary context with static linking.
switches and impair TLB, caches and thus performance.
In summary, if we are not aware of such OS and library None of those switches are caused by the software under overhead when looking at the measurement results, we may analysis, and thus considered errors.
draw conclusions that merely reflect the operating system (g) Major page faults cause disk access. If the effects to be and its libraries, rather than the software that we are trying measured are rather small compared to disk access times, to analyze and improve.
then major faults would mask those effects due to large jitter, and must be avoided. Furthermore, it is worth not-4
Measurement Setup
ing that a process accessing a file might be sent into In this section, we propose a measurement setup on SMP
waiting state, and then the number of unhalted processor Linux, that minimizes measurement errors and thus provides cycles is not incremented. Consequently, I/O is not di-a faithful quantification of the software under analysis, while rectly visible in counter-based measurements, and even suppressing other influences as far as possible.
I/O-limited applications can still exhibit a high IPC. InAll event interactions described in previous sections are directly, however, it can be seen that the process spends highly depending on the microarchitecture, the operating less CPU time than wall-clock time, pointing to an I/O-system and its configuration, next to the program under bottleneck.
analysis itself. We describe our measurement setup for the (h) Depending on the microarchitecture, DMA might slow system detailed in Table 1, as a representative of an advanced down DRAM access because of increased traffic on the superscalar out-of-order processor with operating system, Northbridge [7]. Naturally, DMA also generates inter-MMU, caches, prefetchers and so on. For different targets or rupts. Furthermore, cache coherency might be a con-OSs, the setup has to be adapted accordingly.
cern [25], and generate extra cache traffic.
(i) Some caches might be shared with peripherals and thus 3We have observed a 10% decline in throughput in the STREAM bench-be influenced by their operation. For example, the GPU
mark [23], when executed on a dual-monitor vs. single-monitor setup 9
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Figure 3. Call graphs of a short-living program, suggesting that most of the work being done is OS “overhead”. The user function is highlighted in black. Both figures show the same program, where (a) is dynamically linked and (b) statically linked.
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Source
Class
Impact
When
Note
Speed Stepping/Frequency Scaling HW
varying execution time
immediate
TLB Shootdown
HW
slower address translation
lagging
DMA Transfers
HW/SW slower memory access
immediate
Cache Coherency*
HW
additional accesses to cache
immediate & lagging (a)
Hardware Prefetcher*
HW
more cache & TLB accesses, less or more misses immediate & lagging (b)
Load Balancing/Migrations
SW
more & TLB accesses, less or more misses
immediate & lagging
Interrupts
HW/SW longer execution time, more mode switches
immediate & lagging (c)
Mode Switches
SW
more cache/TLB misses, more context switches immediate & lagging (d)
Context Switches
SW
more cache/TLB misses, longer execution time
immediate & lagging
Allocator
SW
more context switches, different cache usage
immediate & lagging (e)
Scheduler
SW
more or less context switches
immediate & lagging (f)
Major Page Fault*
SW/HW more context switches
immediate & lagging (g)
Peripherals
HW
more variance in memory access, cache misses immediate & lagging (i)
Table 3. Summary of sources for measurement errors. Sources marked with (*) may or may not be considered creating measurement errors, depending on the intended observation.
The main focus of our setup is how to control variables run queue, to prevent scheduler ticks from getting generated.
that would otherwise lead to the measurement errors listed There are several factors that can cause runnable kernel in the previous section. Therefore, many of the suggestions threads, which are discussed in [15]. One such factor are given here are about parameters and configuration of both RCU calls, which should be disabled for the isolated CPUs the OS and the CPU. In the end, we briefly describe the with kernel boot parameter rcu_nocbs. Another reason are measurement process itself.
bottom halves of interrupts as discussed earlier, which can be prevented by setting the interrupt affinity.
4.1
Control Variables
Allocator Selection: Yet another reason why tickless oper-4.1.1
Isolating and Pinning the Process
ation fails, may be the kernel’s memory allocator. Depend-First, one or more (yet not all) CPU cores were isolated from ing on the distribution, different algorithms (called “SLAB”, the scheduler and SMP balancing, which prevents other
“SLOB” or “SLUB”) can be in use, with different impact on userspace tasks from interfering (kernel boot parameter cache miss/hit metrics and execution time. Notably, the SLAB
isolcpus). We recommend to leave out CPU0, since one allocator requires periodic cleanups, which enables a kernel core is required to process the offloaded tasks, and CPU0
process and prevents tickless operation. The best option is usually serves interrupts that cannot be moved to other cores the newest, and in Desktop distributions most commonly (e.g., some DMA controllers). Additionally, Hyperthreading used allocator, the SLUB allocator (one exception is Debian, was turned off in BIOS, to avoid hardware context switches, using SLAB and thus rendering adaptive ticks ineffective).
same-core migrations and some known errata with the hard-Changing the allocator requires building a custom kernel.
ware counters. The process under analysis was subsequently Watchdogs: More context switches could be caused by the pinned to the isolated cores with command line tool taskset.
watchdog. This can be prevented with kernel boot parame-Note that each subprocess/thread needs pinning if a range of ters nowatchdog and nosoftlockup.
cores is isolated, since otherwise migrations might happen.
Real-Time Priority: Depending on the Linux version, some Interrupts: The affinity of interrupts was set to the non-kernel threads [15] are still active on isolated cores and can isolated cores, preventing them from skewing the measure-cause unwanted context switches (e.g., kworker). To avoid
ments4. Thermal interrupts were prevented by throttling the this, we perform our measurements at real-time priority us-CPU speed such that full load does not lead to critical tem-ing the command line tool chrt. Additionally, real-time throt-peratures. This can be done by setting the governor’s limits tling must be disabled (by setting sched_rt_runtime_us in in sysfs or tools like cpufreq. Machine check exceptions were procfs), since otherwise some Linux versions force one invol-disabled by kernel boot parameter mce=off.
untary context switch per second for CPU-bound tasks.
Ensuring tickless operation: To minimize the number of Summary: The show configuration results in no other user context switches, a kernel with adaptive ticks should be processes running on the isolated cores, and in no CPU mi-used, and enabled with kernel boot parameter nohz_full.
grations taking place of our process(es). Some interrupts may The remaining challenge is to keep kernel threads off the 4/proc/irq/default_smp_affinity
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still be left, but these should only cause mode switches. This to bring data from the slow disk to RAM, as soon as a de-can be verified using perf5.
mand is foreseen. However, while this mechanism prevents major page faults quite effectively, it causes DMA transfers 4.1.2
Fixing Processor Speed
and might not be desirable. Once a file is buffered in virtual If the processor supports speed stepping/frequency scaling, memory (“page cache”), data can be accessed without disk then the clock speed of the processor should be fixed for access taking place. Obviously, the page cache can only pre-two reasons. First, if the absolute execution time is part of vent all disk access if it is large enough to hold all files that the measured metrics, a non-fixed clock speed could yield will be in use, and not flushed in between.
different results in subsequent runs, depending on how the The easiest way to make use of the page cache is to run the governor selects the frequency. Second, we conservatively measurement twice, and discarding the results from the first prevent a potential impact of frequency scaling on processor run. Alternatively, there exist tools which allow checking cycles; usually there is not enough information in the data and manipulating the page cache, e.g., vmtouch.
sheets to conclude there is no influence.
4.1.5
Controlling Hardware Data Prefetching
Further, fixing the clock speed also ensures more stable DRAM access times when measured in processor clock cycles.
Although it is possible to distinguish some events by their DRAM runs at its own bus frequency, which means that a cause (i.e., demand vs. speculation), it cannot be known higher CPU frequency will make DRAM bottlenecks stand how much of the prefetcher-induced penalties are hidden out more. This is important for backend-bound benchmarks, in out-of-order processing, or how many of certain events where the bottleneck becomes more severe with increasing are caused by the software directly. One shortcut to answer processor frequency.
this question is to turn off hardware prefetching and run the Fixing the processor speed is best done in BIOS by dis-benchmarks twice, then compare results. This is specific to abling technologies like speed stepping. However, it has to every processor family, and may not be possible on all CPUs.
be ensured that the processor has sufficient cooling under For Intel CPUs, machine-specific registers (MSRs) allow con-full load, which often is not the case for mobile or Laptop de-figuring the processor in many ways, inter alia to turn off vices. Alternatively, for Intel CPUs, the older ACPI driver can prefetchers.
be activated with boot parameter intel_pstate=disable, 4.1.6
Controlling Influences of Peripherals
which supports to fix the frequency of the processor.
If peripherals are sharing memory with the software under 4.1.3
Controlling TLB Flushes and Shootdowns
analysis, it might be helpful to turn them off or minimize their impact, in case an influence on the results cannot be Even though we have isolated cores from the scheduler, ruled out. For example, the graphics engine in Sandy Bridge shootdowns may still happen because the Linux kernel runs can be made to relinquish parts of the L3 cache by booting on the same core as the process it is serving. Thus, every into a low-resolution mode.
core that is used executes a part of the kernel at some point, where shared kernel data can lead to shootdowns.
4.2
Taking Measurements
In our kernel version KPTI is enabled, yet PCID support is The act of taking measurements itself is straightforward, and not available. Therefore, each mode switch flushes the TLB, should provide meaningful results if the previous recommen-significantly skewing our measurements (see Section 2.2.4).
dations have been followed. We therefore summarize this We thus disabled KPTI with kernel boot option pti=off6.
only briefly.
This step is not recommended when PCIDs are supported by both OS and CPU.
4.2.1
Performance Monitoring Units
4.1.4
Controlling Page Faults
While there exist different ways and tools to measure performance, such as hardware tracing and countless tools, we As earlier, we assume the user wants to avoid major page briefly describe the use of the CPU’s performance monitoring faults as far as possible, since they have a penalty large unit (PMU) [12], which provides hardware event counters.
enough to hide other effects that may be of interest. Also, These counters are processor-specific registers that are in-there is not much the user can do if access to secondary cremented on the occurrence of certain events, for example, storage is logically required, unless the the program under the number of L1 cache misses, or the number of processor analysis is redesigned.
cycles. Under Linux, the perf tool allows setting up and readIn Linux, reading or writing data files is by default buffered ing these registers, and to separate event counts by process.
through the virtual memory. A read-ahead heuristic is used A growing number of CPUs and SoCs offer an equivalent to the PMU, e.g., many ARM Cortex processors already do.
5perf record -e "sched:sched_switch" ...
Additional to hardware events, the perf also reads kernel 6Note that this may open a security vulnerability!
(software) counters, such as minor and major page faults, 12
context switches and CPU migrations. Note: We highly rec-and precise results. Otherwise, grouping and multiplexing ommend to use the native names of the registers as opposed should be used, preferably using weak groups.
to perf’s names, to avoid misunderstandings (e.g., the perf For the system described in Tab. 1, the CPU supports tool counts STLB hits under the name ITLB loads on Sandy around 475 different events, offering deep insights into the Bridge), and to watch out for errata (such as counter prob-processor. However, looking at single counter values can be lems under HyperThreading).
misleading. Counters can have several orders of magnitude Multiplex and Grouping: PMUs have a limited number of in difference (e.g., page faults vs. cache misses), yet have hardware counters (eight, in our case). If we request more a similar impact on the resulting performance. Especially events than counters, perf starts time-multiplexing, and ex-when comparing two versions of the same program, large trapolating the results from the sampling window to the differences may become meaningless when compared to the entire life time of the process. It is thus possible to miss absolute values.
certain events if the specific counter is not currently active. Therefore, if the process behavior is not stationary for 4.2.2
Hierarchical Bottleneck Analysis
long enough, the results may appear inconsistent. One way To identify the true bottleneck of an application, Yasin has around this issue is grouping of counters, which tries to proposed a hierarchical analysis [33]. The analysis follows multiplex all counters of a group at the same time. How-the hierarchical anatomy of general OoO processors, de-ever, some processors have scheduling restrictions for which picted in Fig.4. As a first level, the user should only be counters must not be used together. One way around this is concerned whether the majority of cycles is spent in the to avoid multiplexing at all, and execute the program multi-Frontend (entails decoding instructions, L1d access and Mi-ple times instead. This only makes sense if the workload is crocode switches), or in Bad Speculation (machine clears and repeatable. With Boolean options for multiplexing (M) and branch mispredictions) or in the Backend (L1/2/3 and DRAM
grouping (G), there are four different possibilities to measure, data access) or whether most of the time is spent in retiring each with its own consequences:
instructions (ideally, 100%). Once the most time-consuming 1. Grouping and Multiplexing: Possibly unsafe and incom-category is identified, the user should focus on its children plete results, because the process might be undersam-at the next level, determine the most prominent one, and so pled from M., and G. may create scheduling conflicts, on. For a full explanation, the reader is referred to [33].
which disables some counters.
2. No Grouping and Multiplexing: Possibly unsafe but complete, because the process might be undersampled and counts inconsistent towards each other, but groups can be built in arbitrary ways to resolve scheduling conflicts.
3. No Multiplexing and no Grouping: Possibly unsafe but complete, only works for repeatable workloads. Multiplexing, although not enabled, might still take place implicitly in an attempt to resolve conflicting counters.
4. No Multiplexing and Grouping: Safe but possibly in-complete, only works for repeatable workloads. The grouping prevents implicit multiplexing from taking place.
By unsafe we mean that the counts may be both imprecise and contradict each other (e.g., it might be possible that Figure 4. Hierarchical View on Processor Performance [33].
the L2 miss count is greater than the L3 access count). By complete we mean that every event that has been requested A free implementation of this analysis for Intel CPUs is was indeed counted at some point in time.
available in a tool called toplev, which is part of Intel’s Recently, weak groups have been introduced in perf [17],
pmu-tools [18]. It takes measurements using Linux’ perf which can be broken to resolve scheduling conflicts, but oth-tool, and presents the results in the explained hierarchy, erwise ensure that certain events are counted synchronously.
but in ratios rather than absolute numbers. Multiplexing It is thus a mixture of cases 1 and 2, resulting in complete and grouping is supported as described earlier. Taking the results with minimal multiplexing artifacts, applicable to measurements thus boils down to invoking the tool.
non-repeatable workloads.
Only after the bottleneck has been identified, individual We suggest to use grouping and avoid multiplexing as counters should be inspected using perf, since now we know long as the workload is repeatable, to obtain self-consistent they are meaningful. Last but not least, it is worth noting that 13
pmu-tools also includes a convenience wrapper for perf, be isolated, as explained in Section 4. Future releases of called ocperf. This tool allows using native names for Intel perf/toplev might no longer have this caveat.
CPUs, and has better support for uncore events.
It should be noted that toplev does not allow localizing 5
Experiments
causes of undesired behavior in the source code, since counters operate cumulatively and are not associated to specific We provide a few short examples illustrating the difference locations in the source code of a program. A method for between our proposed measurement setup, and a default localization is provided by perf in sampling mode, where Linux environment. We have chosen three programs with a history of events can be logged, annotated in the source different characteristics:
code. The tool offers many options explained in the docu-
• gnugo: This is a game engine for the Chinese Go game.
mentation [13].
The program consists of many branches and jumps,
4.2.3
Uncertainty Propagation
many of which are hard to predict. Additionally, it has a low spatial locality of instructions, and will there-All measured events can be associated with a measurement fore like suffer from many instruction cache misses.
uncertainty. This uncertainty indicates the precision of the Memory usage is low compared to the next program.
measured values, and prevents us from drawing false con-
• stream: This is McCalpin’s memory bandwidth bench-clusions if we are comparing two versions of a software.
mark [23], which stresses the memory subsystem heav-Crucially, not all events can be measured directly on the ily, but in a predictable pattern. Consequently, this hardware, and thus must be calculated from others, mea-program occupies a lot of memory (1.1GB in our case), sured or themselves calculated, ones. The calculated events but has few branches or jumps.
therefore have an uncertainty based on their constituents,
• syscalls: This is the program shown in Appendix A,
which needs to be properly tracked. As an example, on Sandy which exercises syscalls. The memory usage is low Bridge the cache hit ratio r must be estimated from access a compared to the others, but it causes many mode
and hit h counters, and its standard deviation σr depends on switches and thus allows more context switches to both measurements as follows
take place. This program should keep the functional h r
σ
σ
σ 2
2
units busy.
h
a,h ,
r =
+ σa − 2
(1)
a
h
a
ah
All programs have been executed five times in a row to al-where σa,h is the covariance between accesses and hits. Anal-low determining a standard deviation, which is then used for ogously, the uncertainty is propagated for multiplication, our uncertainty propagation. We have repeated this for two division, addition, and all other operations [20].
different measurement setups; first with the default settings We have contributed patches to toplev, which track the of the system described in Tab. 1, and another time with our standard deviation of counters across multiple runs (--repeat) proposed measurement setup described in Section 4.
through all calculations, while assuming statistically inde-All measurements have been taken with similar parame-pendent variables, i.e., σa,h = 0. The resulting uncertainty ters, using the performance monitoring counters (see Sec-for each event is indicated with error bars in our plots.
tion 4.2.1. Specifically, multiplexing and HyperThreading Warning: When measurements are taken in system-wide were disabled, to prevent undersampling and to ensure proper mode across more than one logical processor core, then uncertainty propagation, as explained in Section 4.2.2.
toplev currently forces perf to not aggregate the results (flag -A). This in turn suppresses perf’s output of the stan-5.1
Hierarchical Bottleneck Analysis
dard deviation, and leads to an optimistic uncertainty. System-wide mode is also forced when HyperThreading (HT) is ac-Figure 5 shows the results of the first level of the hierarchical tivated, thus HT suppresses the standard deviation, as well.
analysis using toplev. It can be seen that the measurements There are thus three options to capture measurement uncer-all programs reflect the expected behavior: gnugo indeed tainty correctly: (1) Recommended: Disable HT and avoid spends a lot of time in its frontend (FE), due to many cache system-wide mode. The perf tool will “follow” the software misses and branch mispredictions (see Fig.6). The stream under analysis to whatever core it is going (if not pinned).
benchmark spends most of its time in the backend (BE), (2) Alternative 1: Disable HT and use system-wide mode because it is mostly memory-bound (see Fig.7). The syscalls while filtering only for only one single core. The software program shows itself to be mainly backend-heavy, but this under analysis must be pinned to that single core. (3) Alter-time due to core usage (see Fig.8).
native 2: Keep HT and use system-wide mode, and specify The difference between the default setup and ours is how-
--single-thread, which forces toplev to aggregate the re-ever barely visible for this type of analysis. Only syscalls sults across all CPUs. The system should otherwise be idle. In shows a larger difference. The results with our proposed all cases, the core where the software is running on should setup make the program appear less back-end bound, in 14
measurement setups, thus the programs would take about 100
the same time to execute in both setups.
The next apparent difference is the absence of context switches (one switch is always necessary) and CPU migra-
%
tions in our setup, followed by no major faults in our setup, 50
and a different L1d caching behavior. All in all, the measure-ratio
ment uncertainty again is comparable when the counts are close.
The results for stream and syscalls are shown in Appendix B. Again, there are some differences in the absolute 0
event counts. This time, IPC0 shows that stream runs faster in our setup ( 0.6/0.8 = 25%), whereas syscalls is signifi-eam-dfl
cantly slower ( 0.68/0.15 = 450%), as expected due to the gnugo-dfl
eam-our
gnugo-ourstr
str
syscalls-dfl
syscalls-our
higher overhead for mode switches. Furthermore, syscalls also shows large differences in most counters. The entire FE
BAD
BE
RET
characteristics seem to be driven by the differences in the mode switch cost, and even outweighs that the default setup Figure 5. Results of hierarchical performance analysis for performs many more context switches and CPU migrations default setup (dfl) and our proposed setup (our).
than our proposed setup.
In conclusion, the measurement setup can make a large difference in absolute event counts and software performance.
exchange for more time spent retiring instructions. This hi-Our experiments suggest that neither setup is always domi-erarchical analysis does not offer any more explanation, and nating in performance, and that the choice of setup should thus we will revisit this in the next section.
depend on the software under analysis.
All figures have error bars, but only very few of them are visible due to their low magnitude. This suggests that 5.3
Stability towards Background Processes
a default setup may be sufficient in terms of measurement So far, all measurements have been taken on an idle system, uncertainty, and that the results of a hierarchical analysis with no interactive user processes being executed. We now may be close enough between the two setups, at least for the examine how measurements change when we run some back-programs tested here. This is surprising, because the absolute ground processes, as often the case in production systems.
values of the counters, as well as program performance, differ Specifically, we run four background processes which stress significantly, as we show next.
caches and DRAM (stress-ng -C2 --vm 2 --vm-populate
--vm-bytes=512m).
5.2
Absolute Event Counts and Absolute
Performance
5.3.1
Hierarchical Analysis
Hierarchical analysis has not been showing any larger differ-Figure 10 shows the results of a hierarchical analysis, which ences between the measurement setups. It builds on ratios certify that all measurements under all setups are stable.
rather than absolute values, therefore large differences could There are small differences, which however do not change become invisible. While this is acceptable and desirable for the results fundamentally. Again, the measurement uncer-bottleneck analysis, it might be undesirable in other sce-tainty surprisingly is always very low. The results suggest narios, such as when absolute performance or the precise that the hierarchical analysis is also robust against back-event counts are required. These absolute counts differ sig-ground processes, at least at the uppermost level of the hier-nificantly, as we show in the following.
archy.
Figure 9 shows the absolute event counts of gnugo for our proposed setup (“tune”) and for the default one. First, it can 5.3.2
Absolute Event Counts and Absolute
be seen that the program runs faster under the default setup.
Performance
The bar “task-clock (msec)” shows 11.4s vs 12.9s; note that The absolute event counts give a similar picture as before.
task-clock only increments for those cycles where the pro-However, the wall-clock time of the programs is considerably gram has been active on the processor, which is always less more stable in our setup.
or equal than wall-clock time. As a better metric reflecting Figure 11 shows again absolute event counts for both wall-clock time, all plots show a bar called “IPC0”, which measurement setups of gnugo, when background processes is calculated as I /(f · tw ), where I is the number of instruc-are running. A large change in IPC0 can be seen. In our tions, f the processor frequency, and tw the wall-clock time setup, the program almost maintains the same performance of the program. In Fig.9, IPC0 is almost identical for both as on an idle system (4% degradation, since the IPC0 drops 15
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Figure 7. toplev output for stream with our proposed measurement setup.
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Figure 8. toplev output for syscalls with our proposed measurement setup.
from 1.25 to 1.21), whereas in the default setup performance Blackfin, MIPS, PowerPC and SPARC processors [30]. Spe-significantly degrades (64% degradation, since IPC0 drops cific to Intel CPUs, we have toplev, which we have men-from 1.22 to 0.45). The result is similar for stream, which tioned earlier [18], and the commercial tool VTune. Inter-degrades by 16% in our setup, but by 67% in the default setup, estingly, some processors also provide counters for power and for syscalls, which degrades by 60% in the default setup, events [27], for which our setup might be equally important.
but only by 2% in our setup.
Software-based Measurements: There exist many well-In summary, the absolute event counts are considerably known tools for debugging software performance. Perhaps different in our setup, and additionally the performance of best known are software profilers, such as gprof (execution the program under background load is significantly better time) and Visual Studio Profiler. More generally, there ex-maintained in our setup.
ists the larger class of dynamic program analyzers, which observe programs during run-time, sometimes by instrumentation, other times through simulation. A survey about 5.4
Other Influences
those was recently given in [10]. One successful framework When performance counters are used, there is a low but worth mentioning is Valgrind [26], which provides tools visible overhead, as with many other measurement methods.
to track execution time and memory usage. However, such We have neglected this overhead in our experiments.
tools change the program’s characteristics through instrumentation or simulation, and furthermore do not provide any microarchitectural explanations. Finally, we should also 6
Related Work
mention ftrace, which can collect software events during Hardware Performance Counters: Since all performance the execution of a program, and is integrated with perf.
counters are vendor- and processor-specific, different profil-Reducing OS Noise: Another attempt at reducing the OS’
ing software exists to access them. A generic tool is Linux’
impact on workloads has been described by Akkan et. al [1].
perf, which also supports some many AMD, ARM, ARC, However, their report is mainly concerned with the OS, and 16
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Figure 9. Absolute event counts for gnugo for default setup (default) and our proposed setup (tune). Red error bars indicate measurement uncertainty.
furthermore neglects some important effects (e.g., Hyper-100
Threading, ftrace overhead and tick length). Nevertheless, some pointers can be found there. For technical details in var-80
ious aspects on Linux, the Linux Kernel Mailing List (LKML), the kernel docs, and LWN have been invaluable primary
%
sources for understanding the inner workings of the kernel.
60
We have given the references where applicable, and many ratio
more can be found by the interested reader. Last but not 40
least, to erase even the faintest doubt of imprecise or depre-cated documentation, the Linux source code itself serves as a definitive reference.
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mance. Based on the identified influences, we have proposed a measurement setup that aims to reduce measurement er-FE
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rors, such that not the OS or hardware is characterized, but mainly the program under analysis. Towards that, we have Figure 10. Results of hierarchical performance analysis with extended a hierarchical performance analysis method with and without highly active background processes, for default uncertainty propagation, to indicate the measurement errors.
setup (dfl) and our proposed setup (our).
Surprisingly, our experiments showed that for this hierarchical and ratio-based performance analysis method, the measurement setup makes little difference. In contrast, when 17
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Figure 11. Absolute event counts for gnugo for default setup (default) and our proposed setup (tune) with background processes.
Red error bars indicate measurement uncertainty. Large performance differences are visible.
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Figure 12. Absolute event counts for stream for default setup (default) and our proposed setup (tune).
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Figure 13. Absolute event counts for syscalls for default setup (default) and our proposed setup (tune).
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Figure 14. Absolute event counts for stream for default setup (default) and our proposed setup (tune) with background processes.
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Figure 15. Absolute event counts for syscalls for default setup (default) and our proposed setup (tune) with background processes.
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