

Christoph Körner and Kaijisse Waaijer

Perform large-scale end-to-end advanced
machine learning in the cloud with
Microsoft Azure Machine Learning

Mastering Azure
Machine Learning

Mastering Azure Machine Learning

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Christoph Körner and Kaijisse Waaijer

Technical Reviewers: Alexey Bokov and Marek Chmel

Managing Editors: Utkarsha Kadam and Athikho Sapuni Rishana

Acquisitions Editor: Poornima Kumari

Production Editor: Deepak Chavan

Editorial Board: Ayaan Hoda

First Published: April 2020

Production Reference: 1150720

ISBN: 978-1-78980-755-4

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK

Get hands-on and experiment with
machine learning in Azure. Choose
your tools and frameworks. Accelerate
model development and manage the
complete lifecycle with DevOps for
machine learning.
Start free >

Get help with your project.
Talk to a sales specialist >

Build • Train • Deploy

Free services
$200 credit
Free training

M O D E L S

Start free >

Talk to a sales specialist >

https://aka.ms/AA67ze2
https://aka.ms/AA67rp4

Table of Contents

Preface i

Section 1: Azure Machine Learning 1

Chapter 1: Building an end-to-end machine learning
pipeline in Azure 3

Performing descriptive data exploration .. 4

Moving data to the cloud .. 6

Understanding missing values ... 7

Visualizing data distributions ... 8

Finding correlated dimensions .. 10

Measuring feature and target dependencies for regression 12

Visualizing feature and label dependency for classification 14

Exploring common techniques for data preparation 16

Labeling the training data .. 17

Normalization and transformation in machine learning 19

Encoding categorical variables ... 20

A feature engineering example using time-series data .. 21

Using NLP to extract complex features from text ... 22

Choosing the right ML model to train data ... 22

Choosing an error metric .. 24

The training and testing split ... 25

Achieving great performance using tree-based ensemble models 25

Modeling large and complex data using deep learning techniques 26

Optimization techniques ... 26

Hyperparameter optimization ... 27

Model stacking ... 28

Azure Automated Machine Learning ... 29

Deploying and operating models .. 29

Batch scoring using pipelines ... 30

Real-time scoring using a container-based web service ... 31

Tracking model performance, telemetry, and data skew 32

Summary .. 32

Chapter 2: Choosing a machine learning service in Azure 35

Demystifying the different Azure services for ML .. 36

Choosing an Azure service for ML ... 38

Choosing a compute target for Azure Machine Learning 41

Azure Cognitive Services and Custom Vision .. 44

Azure Cognitive Services ... 45

Custom Vision—customizing the Cognitive Services API .. 49

Azure Machine Learning with GUIs .. 53

Azure Machine Learning designer ... 53

Azure Automated Machine Learning ... 57

Microsoft Power BI .. 59

Azure Machine Learning workspace .. 60

Organizing experiments and models in Azure Machine Learning 62

Deployments through Azure Machine Learning .. 66

Summary .. 67

Section 2: Experimentation and Data Preparation 69

Chapter 3: Data experimentation and visualization
using Azure 71

Preparing your Azure Machine Learning workspace 72

Setting up the ML Service workspace ... 73

Running a simple experiment with Azure Machine Learning 78

Logging metrics and tracking results .. 85

Scheduling and running scripts .. 88

Adding cloud compute to the workspace ... 91

Visualizing high-dimensional data .. 97

Tracking figures in experiments in Azure Machine Learning 97

Unsupervised dimensionality reduction with PCA ... 100

Using LDA for supervised projections .. 103

Non-linear dimension reduction with t-SNE ... 105

Generalizing t-SNE with UMAP .. 107

Summary .. 109

Chapter 4: ETL, data preparation, and feature extraction 111

Managing data and datasets in the cloud ... 112

Getting data into the cloud .. 112

Managing data in Azure Machine Learning ... 116

Exploring data registered in Azure Machine Learning ... 121

Preprocessing and feature engineering with
Azure Machine Learning DataPrep ... 125

Parsing different data formats .. 126

Building a data transformation pipeline in Azure Machine Learning 129

Summary .. 140

Chapter 5: Azure Machine Learning pipelines 143

Benefits of pipelines for ML workflows ... 144

Why build pipelines? ... 145

What are Azure Machine Learning pipelines? ... 146

Building and publishing an ML pipeline ... 147

Creating a simple pipeline ... 148

Connecting data inputs and outputs between steps ... 151

Publishing, triggering, and scheduling a pipeline ... 156

Parallelizing steps to speed up large pipelines ... 161

Reusing pipeline steps through modularization ... 165

Integrating pipelines with other Azure services ... 168

Building pipelines with the Azure Machine Learning designer 168

Azure Machine Learning pipelines in Azure Data Factory 170

Azure Pipelines for CI/CD ... 171

Summary .. 173

Chapter 6: Advanced feature extraction with NLP 175

Understanding categorical data ... 176

Comparing textual, categorical, and ordinal data .. 177

Transforming categories into numeric values .. 178

Categories versus text .. 185

Building a simple bag-of-words model ... 186

A naive bag-of-words model using counting ... 186

Tokenization – turning a string into a list of words .. 188

Stemming – rule-based removal of affixes .. 190

Lemmatization – dictionary-based word normalization 191

A bag-of-words model in scikit-learn .. 193

Leveraging term importance and semantics .. 195

Generalizing words using n-grams and skip- grams .. 195

Reducing word dictionary size using SVD .. 197

Measuring the importance of words using tf-idf .. 198

Extracting semantics using word embeddings ... 200

Implementing end-to-end language models ... 203

End-to-end learning of token sequences ... 204

State-of-the-art sequence-to-sequence models ... 205

Text analytics using Azure Cognitive Services ... 205

Summary .. 208

Section 3: Training Machine Learning Models 211

Chapter 7: Building ML models using
Azure Machine Learning 213

Working with tree-based ensemble classifiers ... 214

Understanding a simple decision tree ... 215

Combining classifiers with bagging .. 219

Optimizing classifiers with boosting rounds ... 221

Training an ensemble classifier model using LightGBM 222

LightGBM in a nutshell ... 223

Preparing the data .. 225

Setting up the compute cluster and execution environment 229

Building a LightGBM classifier ... 232

Scheduling the training script on the Azure Machine Learning cluster 236

Summary .. 240

Chapter 8: Training deep neural networks on Azure 243

Introduction to deep learning ... 244

Why DL? .. 244

From neural networks to DL .. 246

Comparing classical ML and DL .. 250

Training a CNN for image classification ... 253

Training a CNN from scratch in your notebook .. 254

Generating more input data using augmentation ... 258

Moving training to a GPU cluster using Azure Machine Learning compute 260

Improving your performance through transfer learning 265

Summary .. 268

Chapter 9: Hyperparameter tuning and Automated
Machine Learning 271

Hyperparameter tuning to find the optimal parameters 272

Sampling all possible parameter combinations using grid search 274

Trying random combinations using random search .. 279

Converging faster using early termination .. 281

Optimizing parameter choices using Bayesian optimization 285

Finding the optimal model with Azure Automated Machine Learning 288

Advantages and benefits of Azure Automated Machine Learning 289

A classification example ... 292

Summary .. 297

Chapter 10: Distributed machine learning on Azure 301

Exploring methods for distributed ML ... 302

Training independent models on small data in parallel 303

Training a model ensemble on large datasets in parallel 305

Fundamental building blocks for distributed ML ... 308

Speeding up DL with data-parallel training ... 310

Training large models with model-parallel training ... 312

Using distributed ML in Azure ... 314

Horovod—a distributed DL training framework ... 315

Implementing the HorovodRunner API for a Spark job 317

Running Horovod on Azure Machine Learning compute 318

Summary .. 320

Chapter 11: Building a recommendation engine in Azure 323

Introduction to recommender engines .. 324

Content-based recommendations .. 326

Measuring similarity between items .. 329

Feature engineering for content-based recommenders 331

Content-based recommendations using gradient boosted trees 332

Collaborative filtering—a rating-based recommendation engine 333

What is a rating? Explicit feedback as opposed to implicit feedback 334

Predicting the missing ratings to make a recommendation 336

Scalable recommendations using ALS factorization .. 338

Combining content and ratings in hybrid recommendation engines 339

Building a state-of-the-art recommender using
the Matchbox Recommender .. 340

Automatic optimization through reinforcement learning 341

An example using Azure Personalizer in Python .. 342

Summary .. 345

Section 4: Optimization and Deployment of
Machine Learning Models 347

Chapter 12: Deploying and operating machine
learning models 349

Deploying ML models in Azure .. 351

Understanding the components of an ML model ... 352

Registering your models in a model registry .. 354

Customizing your deployment environment .. 356

Choosing a deployment target in Azure .. 358

Building a real-time scoring service ... 359

Implementing a batch scoring pipeline ... 362

Inference optimizations and alternative deployment targets 365

Profiling models for optimal resource configuration ... 365

Portable scoring through the ONNX runtime ... 366

Fast inference using FPGAs in Azure .. 368

Alternative deployment targets .. 369

Monitoring Azure Machine Learning deployments .. 371

Collecting logs and infrastructure metrics .. 372

Tracking telemetry and application metrics ... 374

Summary .. 374

Chapter 13: MLOps—DevOps for machine learning 377

Ensuring reproducible builds and deployments ... 378

Version-controlling your code ... 380

Registering snapshots of your data .. 381

Tracking your model metadata and artifacts .. 383

Scripting your environments and deployments ... 385

Validating your code, data, and models .. 387

Rethinking unit testing for data quality ... 387

Integration testing for ML .. 390

End-to-end testing using Azure Machine Learning ... 391

Continuous profiling of your model ... 392

Summary .. 392

Chapter 14: What's next? 395

Understanding the importance of data ... 397

The future of ML is automated ... 399

Change is the only constant – preparing for change 400

Focusing first on infrastructure and monitoring .. 402

Controlled rollouts and A/B testing .. 403

Summary .. 405

Index 409

About

This section briefly introduces the authors, the reviewers, the coverage of this book, the
technical skills, and the prerequisites that you'll need to get started.

Preface

>

ii | Preface

About Mastering Azure Machine Learning
The increase being seen in data volume today requires distributed systems, powerful
algorithms, and scalable cloud infrastructure to compute insights and train and deploy
machine learning (ML) models. This book will help you improve your knowledge of
building ML models using Azure and end-to-end ML pipelines on the cloud.

The book starts with an overview of an end-to-end ML project and a guide on how
to choose the right Azure service for different ML tasks. It then focuses on Azure
Machine Learning and takes you through the process of data experimentation, data
preparation, and feature engineering using Azure Machine Learning and Python. You'll
learn advanced feature extraction techniques using natural language processing (NLP),
classical ML techniques, and the secrets of both a great recommendation engine and
a performant computer vision model using deep learning methods. You'll also explore
how to train, optimize, and tune models using Azure Automated Machine Learning
and HyperDrive, and perform distributed training on Azure. Then, you'll learn different
deployment and monitoring techniques using Azure Kubernetes Services with Azure
Machine Learning, along with the basics of MLOps—DevOps for ML to automate your
ML process as CI/CD pipeline.

By the end of this book, you'll have mastered Azure Machine Learning and be able to
confidently design, build and operate scalable ML pipelines in Azure.

About the authors

Christoph Körner recently worked as a cloud solution architect for Microsoft,
specialising in Azure-based big data and machine learning solutions, where he was
responsible to design end-to-end machine learning and data science platforms. For
the last few months, he has been working as a senior software engineer at HubSpot,
building a large-scale analytics platform. Before Microsoft, Christoph was the technical
lead for big data at T-Mobile, where his team designed, implemented, and operated
large-scale data analytics and prediction pipelines on Hadoop. He has also authored
three books: Deep Learning in the Browser (for Bleeding Edge Press), Learning Responsive
Data Visualization, and Data Visualization with D3 and AngularJS (both for Packt).

Kaijisse Waaijer is an experienced technologist specializing in data platforms, machine
learning, and the Internet of Things. Kaijisse currently works for Microsoft EMEA as a
data platform consultant specializing in data science, machine learning, and big data.
She works constantly with customers across multiple industries as their trusted tech
advisor, helping them optimize their organizational data to create better outcomes and
business insights that drive value using Microsoft technologies. Her true passion lies
within the trading systems automation and applying deep learning and neural networks
to achieve advanced levels of prediction and automation.

About Mastering Azure Machine Learning | iii

About the reviewers

Alexey Bokov is an experienced Azure architect and Microsoft technical evangelist
since 2011. He works closely with Microsoft's top-tier customers all around the
world to develop applications based on the Azure cloud platform. Building cloud-
based applications for challenging scenarios is his passion, along with helping the
development community to upskill and learn new things through hands-on exercises
and hacking. He's a long-time contributor to, and coauthor and reviewer of, many Azure
books, and, from time to time, is a speaker at Kubernetes events.

Marek Chmel is a Sr. Cloud Solutions Architect at Microsoft for Data & Artificial
Intelligence , speaker and trainer with more than 15 years' experience. He's a frequent
conference speaker, focusing on SQL Server, Azure and security topics. He has been
a Data Platform MVP since 2012 for 8 years. He has earned numerous certifications,
including MCSE: Data Management and Analytics, Azure Architect, Data Engineer
and Data Scientist Associate, EC Council Certified Ethical Hacker, and several
eLearnSecurity certifications.

Marek earned his MSc degree in business and informatics from Nottingham Trent
University. He started his career as a trainer for Microsoft Server courses and later
worked as Principal SharePoint and Principal Database Administrator.

Learning objectives

By the end of this book, you will be able to:

• Setup your Azure Machine Learning workspace for data experimentation and
visualization

• Perform ETL, data preparation, and feature extraction using Azure best practices

• Implement advanced feature extraction using NLP and word embeddings

• Train gradient boosted tree-ensembles, recommendation engines and deep neural
networks on Azure Machine Learning

• Use hyperparameter tuning and Azure Automated Machine Learning to optimize
your ML models

• Employ distributed ML on GPU clusters using Horovod in Azure Machine Learning

• Deploy, operate and manage your ML models at scale

• Automated your end-to-end ML process as CI/CD pipelines for MLOps

iv | Preface

Audience

This machine learning book is for data professionals, data analysts, data engineers, data
scientists, or machine learning developers who want to master scalable cloud-based
machine learning architectures in Azure. This book will help you use advanced Azure
services to build intelligent machine learning applications. A basic understanding of
Python and working knowledge of machine learning are mandatory.

Approach

This book will cover all required steps for building and operating a large-scale machine
learning pipeline on Azure in the same order as an actual machine learning project.

To get the most out of this book

Most code examples in this book require an Azure subscription to execute the code.
You can create an Azure account for free and receive USD 200 of credits to use within
30 days using the sign-up page at https://azure.microsoft.com/free.

The easiest way to get started is by creating an Azure Machine Learning Workspace
(Basic or Enterprise) and subsequently creating a Compute Instance of VM type
STANDARD_D3_V2 in your workspace. The Compute Instance gives you access to a
JupyterLab or Jupyter Notebook environment with all essential libraries pre-installed
and works great for the authoring and execution of experiments.

Rather than running all experiments on Azure, you can also run some of the code
examples—especially the authoring code—on your local machine. To do so, you need
a Python runtime—preferably an interactive runtime such as JupyterLab or Jupyter
Notebook—with the Azure Machine Learning SDK installed. We recommend using
Python>=3.6.1.

Note

You can find more information about installing the SDK at https://docs.microsoft.
com/python/api/overview/azure/ml/install?view= azure-ml-py

We will use the following library versions throughout the book if not stated otherwise.
You can as well find a detailed description of all libraries used for each chapter in the
Github repository for this book (link available in the Download resources section).

https://azure.microsoft.com/free
https://docs.microsoft.com/python/api/overview/azure/ml/install?view= azure-ml-py
https://docs.microsoft.com/python/api/overview/azure/ml/install?view= azure-ml-py

About Mastering Azure Machine Learning | v

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the Download resources
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

To get the most out of this book, you should have experience in programming in Python
and have a basic understanding of popular ML and data manipulation libraries such as
TensorFlow, Keras, Scikit, and Pandas.

Conventions

Code words in the text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

"The substring(start,length) expression can be used to extract a prefix from a column
into a new column "

Here's a sample block of code:

for url in product_image_urls:

res = cs_vision_analyze(url, key, features=['Description']) caption =
res['description']['captions'][0]['text']

On many occasions, we have used angled brackets, <>. You need to replace these with
the actual parameter, and not use these brackets within the commands.

Download resources

The code bundle for this book is also hosted on GitHub at https://github.com/
PacktPublishing/Mastering-Azure-Machine-Learning. You can find the YAML and other
files used in this book, which are referred to at relevant instances.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing. Check them out!

Library Version
azureml-sdk 1.3.0
pandas 0.23.4
numpy 1.16.2
scikit-learn 0.20.3

1.13.2
keras 2.3.1
seaborn 0.10.0
matplotlib 3.2.1

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning
https://github.com/PacktPublishing

In the first part of the book, the reader will come to understand the steps and
requirements of an end-to-end machine learning pipeline and will be introduced to
the different Azure Machine Learning. The reader will learn how to choose a machine
learning service for a specific machine learning task.

This section comprises the following chapters:

• Chapter 1, Building an end-to-end machine learning pipeline in Azure

• Chapter 2, Choosing a machine learning service in Azure

Section 1: Azure
Machine Learning

This first chapter covers all the required components for running a custom end-to-
end machine learning (ML) pipeline in Azure. Some sections might be a recap of your
existing knowledge with useful practical tips, step-by-step guidelines, and pointers to
using Azure services to perform ML at scale. You can see it as an overview of the book,
where we will dive into each section in great detail with many practical examples and a
lot of code during the remaining chapters of the book.

First, we will look at data experimentation techniques as a step-by-step process
for analyzing common insights, such as missing values, data distribution, feature
importance, and two-dimensional embedding techniques to estimate the expected
model performance of a classification task. In the second section, we will use these
insights about the data to perform data preprocessing and feature engineering, such
as normalization, the encoding of categorical and temporal variables, and transforming
text columns into meaningful features using Natural Language Processing (NLP).

Building an end-to-
end machine learning

pipeline in Azure

1

4 | Building an end-to-end machine learning pipeline in Azure

In the subsequent sections, we will recap the analytical process of training an ML model
by selecting a model, an error metric, and a train-testing split, and performing cross-
validation. Then, we will learn about techniques that help to improve the prediction
performance of a single model through hyperparameter tuning, model stacking, and
automated machine learning. Finally, we will cover the most common techniques for
model deployments, such as online real-time scoring and batch scoring.

The following topics will be covered in this chapter:

• Performing descriptive data exploration

• Common techniques for data preparation

• Choosing the right ML model to train data

• Optimization techniques

• Deploying and operating models

Performing descriptive data exploration
Descriptive data exploration is, without a doubt, one of the most important steps in
an ML project. If you want to clean data and build derived features or select an ML
algorithm to predict a target variable in your dataset, then you need to understand
your data first. Your data will define many of the necessary cleaning and preprocessing
steps; it will define which algorithms you can choose and it will ultimately define the
performance of your predictive model.

Hence, data exploration should be considered an important analytical step to
understanding whether your data is informative to build an ML model in the first
place. By analytical step, we mean that the exploration should be done as a structured
analytical process rather than a set of experimental tasks. Therefore, we will go through
a checklist of data exploration tasks that you can perform as an initial step in every ML
project—before starting any data cleaning, preprocessing, feature engineering, or model
selection.

Performing descriptive data exploration | 5

Once the data is provided, we will work through the following data exploration checklist
and try to get as many insights as possible about the data and its relation to the target
variable:

1. Analyze the data distribution and check for the following:

• Data types (continuous, ordinal, nominal, or text)

• Mean, median, and percentiles

• Data skew

• Outliers and minimum and maximum values

• Null and missing values

• Most common values

• The number of unique values (in categorical features)

• Correlations (in continuous features)

2. Analyze how the target variable is influenced by the features and check for the
following:

• The regression coefficient (in regression)

• Feature importance (in classification)

• Categorical values with high error rates (in binary classification)

3. Analyze the difficulty of your prediction task.

By applying these steps, you will be able to understand the data and gain knowledge
about the required preprocessing tasks for your data—features and target variables.
Along with that, it will give you a good estimate of what difficulties you can expect in
your prediction task, which is essential for judging required algorithms and validation
strategies. You will also gain an insight into what possible feature engineering methods
could apply to your dataset and have a better understanding of how to select a good
error metric.

Note

You can use a representative subset of the data and extrapolate your hypothesis
and insights to the whole dataset

6 | Building an end-to-end machine learning pipeline in Azure

Moving data to the cloud

Before we can start exploring the data, we need to make it available in our cloud
environment. While this seems like a trivial task, efficiently accessing data from a
new environment inside a corporate environment is not always easy. Also, uploading,
copying, and distributing the same data to many Virtual Machines (VMs) and data
science environments is not sustainable and doesn't scale well. For data exploration,
we only need a significant subset of the data that can easily be connected to all other
environments—rather than live access to a production database or data warehouse.

There is no wrong practice of uploading Comma-Separated Values (CSV) or
Tab-Separated Values (TSV) files to your experimentation environment or accessing
data via Java Database Connectivity (JDBC) from the source system. However, there are
a few easy tricks to optimize your workflow.

First, we will choose a data format optimized for data exploration. In the exploration
phase, we need to glance at the source data multiple times and explore the values,
feature dimensions, and target variables. Hence, using a human-readable text format
is usually very practical. In order to parse it efficiently, a delimiter-separated file, such
as CSV, is strongly recommended. CSV can be parsed efficiently and you can open and
browse it using any text editor.

Another small tweak that will bring you a significant performance improvement is
compressing the file using Gzip before uploading it to the cloud. This will make uploads,
loading, and downloads of this file much faster, while the compute resources spent on
decompression are minimal. Thanks to the nature of the tabular data, the compression
ratio will be very high. Most analytical frameworks for data processing, such as pandas
and Spark, can read and parse Gzipped files natively, which requires minimal-to-no
code changes. In addition, this only adds a small extra step for reading and analyzing
the file manually with an editor.

Once your training data is compressed, it's recommended to upload the Gzipped CSV
file to an Azure Storage container; a good choice would be Azure Blob storage. When
the data is stored in Blob storage, it can be conveniently accessed from any other
services within Azure, as well as from your local machine. This means if you scale your
experimentation environment from an Azure notebook to a compute cluster, your code
for accessing and reading the data will stay the same.

A fantastic cross-platform GUI tool to interact with many different Azure Storage
services is Azure Storage Explorer. Using this tool, it is very easy to efficiently upload
small and large files to Blob storage. It also allows you to generate direct links to your
files with an embedded access key. This technique is simple yet also super effective
when uploading hundreds of terabytes (TBs) from your local machine to the cloud. We
will discuss this in much more detail in Chapter 4, ETL, data preparation, and feature
extraction.

Performing descriptive data exploration | 7

Understanding missing values

Once the data is uploaded to the cloud—for example, using Azure Storage Explorer and
Azure Blob storage for your files—we can bring up a Notebook environment and start
exploring the data. The goal is to thoroughly explore your data in an analytical process
to understand the distribution of each dimension of your data. This is essential for
choosing any appropriate data preprocessing feature engineering and ML algorithms
for your use case.

Note

Please keep in mind that not only the feature dimensions but also the target
variable needs to be preprocessed and thoroughly analyzed.

Analyzing each dimension of a dataset with more than 100 feature dimensions is an
extremely time-consuming task. However, instead of randomly exploring feature
dimensions, you can analyze the dimensions ordered by feature importance and hence
significantly reduce your time working through the data. Like many other areas of
computer science, it is good to use an 80/20 principle for the initial data exploration
and so only use 20% of the features to achieve 80% of the performance. This sets you
up for a great start and you can always come back later to add more dimensions if
needed.

The first thing to look for in a new dataset is missing values for each feature dimension.
This will help you to gain a deeper understanding of the dataset and what actions could
be taken to resolve those. It's not uncommon to remove missing values or impute them
with zeros at the beginning of a project—however, this approach bears the risk of not
properly analyzing missing values in the first place.

Note

Missing values can be disguised as valid numeric or categorical values. Typical
examples are minimum or maximum values, -1, 0, or NaN. Hence, if you find the
values 32,767 (= 215-1) or 65,535 (= 216-1) appearing multiple times in an integer
data column, they might well be missing values disguised as the maximum signed
or unsigned 16-bit integer representation. Always assume that your data contains
missing values and outliers in different shapes and representations. Your task is to
uncover, find, and clean them.

8 | Building an end-to-end machine learning pipeline in Azure

Any prior knowledge about the data or domain will give you a competitive advantage
when working with the data. The reason for this is that you will be able to understand
missing values, outliers, and extremes in relation to the data and domain—which will
help you to perform better imputation, cleansing, or transformation. As the next step,
you should look for these outliers in your data, specifically for the following values:

• The absolute number (or percentage) of the null values (look for Null, "Null", "",
NaN, and so on)

• The absolute number (or percentage) of minimum and maximum values The
absolute number (or percentage) of the most common value (MODE) The absolute
number (or percentage) of value 0

• The absolute number (or percentage) of unique values

Once you have identified these values, we can use different preprocessing techniques
to impute missing values and normalize or exclude dimensions with outliers. You will
find many of these techniques, such as group mean imputation, in action in Chapter 4,
ETL, data preparation, and feature extraction.

Visualizing data distributions

Knowing the outliers, you can finally approach exploring the value distribution of
your dataset. This will help you understand which transformation and normalization
techniques should be applied during data preparation. Common distribution statistics
to look for in a continuous variable are the following:

• The mean or median value

• The minimum and maximum value

• The 25th, 50th (median), and 75th percentiles

• The data skew

Common techniques for visualizing these distributions are boxplots, density plots, or
histograms. Figure 1.1 shows these different visualization techniques plotted per target
class for a multi-class recognition dataset. Each of those methods has advantages
and disadvantages—boxplots show all relevant metrics, while being a bit harder to
read; density plots show very smooth shapes, while hiding some of the outliers; and
histograms don't let you spot the median and percentiles easily, while giving you a good
estimate for the data skew:

Performing descriptive data exploration | 9

Figure 1.1: Common techniques for visualizing data distributions—namely,
boxplots, density plots, and histograms

From the preceding visualization techniques, only histograms work well for categorical
data (both nominal and ordinal)—however, you could look at the number of values per
category. Another nice way to display the value distribution versus the target rate is in
a binary classification task. Figure 1.2 shows the version number of Windows Defender
against the malware detection rate (for non-touch devices) from the Microsoft malware
detection dataset:

Figure 1.2: The version number of Windows Defender against the malware detection rate
(for non-touch devices)

10 | Building an end-to-end machine learning pipeline in Azure

Many statistical ML algorithms require that the data is normally distributed and hence
needs to be normalized or standardized. Knowing the data distribution helps you to
choose which transformations need to be applied during data preparation. In practice,
it is often the case that data needs to be transformed, scaled, or normalized.

Finding correlated dimensions

Another common task in data exploration is looking for correlations in the dataset.
This will help you dismiss feature dimensions that are highly correlated and therefore
might influence your ML model. In linear regression models, for example, two highly
correlated independent variables will lead to large coefficients with opposite signs that
ultimately cancel each other out. A much more stable regression model can be found by
removing one of the correlated dimensions.

The Pearson correlation coefficient, for example, is a popular technique used to
measure the linear relationship between two variables on a scale from -1 (strongly
negatively correlated) to 1 (strongly positively correlated). 0 indicates no linear relation
between the two variables in the Pearson correlation coefficient.

Figure 1.3 shows an example of a correlation matrix of the Boston housing price dataset,
consisting of only continuous variables. The correlations range from -1 to 1 and are
colored accordingly. The last row shows us the linear correlation between each feature
dimension and the target variable. We can immediately tell that the median value
(MEDV) of owner-occupied homes and the lower status (LSTAT) percentage of the
population are negatively correlated:

Performing descriptive data exploration | 11

Figure 1.3: An example of a correlation matrix of the Boston housing price dataset, consisting
continuous variables

It is worth mentioning that many correlation coefficients can only be between
numerical values. Ordinal variables can be encoded, for example, using integer encoding
and can also compute a meaningful correlation coefficient. For nominal data, you need
to fall back on different methods, such as Cramér's V to compute correlation. It is
worth noting that the input data doesn't need to be normalized (linearly scaled) before
computing the correlation coefficient.

12 | Building an end-to-end machine learning pipeline in Azure

Measuring feature and target dependencies for regression

Once we have analyzed missing values, data distribution, and correlations, we can
start analyzing the relationship between the features and the target variable. This will
give us a good indication of the difficulty of the prediction problem and hence, the
expected baseline performance— which is essential for prioritizing feature engineering
efforts and choosing an appropriate ML model. Another great benefit of measuring this
dependency is ranking the feature dimensions by the impact on the target variable,
which you can use as a priority list for data exploration and preprocessing.

In a regression task, the target variable is numerical or ordinal. Therefore, we can
compute the correlation coefficient between the individual features and the target
variable to compute the linear dependency between the feature and the target. High
correlation, and so a high absolute correlation coefficient, indicates a strong linear
relationship exists. This gives us a great place to start for further exploration. However,
in many practical problems, it is rare to see a high (linear) correlation between the
feature and target variables.

One can also visualize this dependency between the feature and the target variable
using a scatter or regression plot. Figure 1.4 shows a regression plot between the
feature average number of rooms per dwelling (RM) and the target variable median
value of owner-occupied homes (MEDV) from the UCI Boston housing dataset. If the
regression line is at 45 degrees, then we have a perfect linear correlation:

Figure 1.4: A regression plot between the feature, RM, and the target variable, MEDV

Performing descriptive data exploration | 13

Another great approach to determining this dependency is to fit a linear or logistic
regression model to the training data. The resulting model coefficients now give
a good explanation of the relationship—the higher the coefficient, the larger the
linear (for linear regression) or marginal (for logistic regression) dependency on the
target variable. Hence, sorting by coefficients results in a list of features ordered by
importance. Depending on the regression type, the input data should be normalized or
standardized.

Figure 1.5 shows an example of the correlation coefficients (the first column) of a fitted
Ordinary Least Squares (OLS) regression model:

Figure 1.5: The correlation coefficients of the OLS regression model

While the resulting R-squared metric (not shown) might not be good enough for a
baseline model, the ordering of the coefficients can help us to prioritize further data
exploration, preprocessing, and feature engineering.

14 | Building an end-to-end machine learning pipeline in Azure

Visualizing feature and label dependency for classification

In a classification task with a multi-class nominal target variable, we can't use the
regression coefficients without further preprocessing the data. Another popular
method that works well out of the box is fitting a simple tree-based classifier to the
training data. Depending on the size of the training data, we could use a decision tree
or a tree-based ensemble classifier, such as random forest or gradient-boosted trees.
Doing so results in a feature importance ranking of the feature dimensions according
to the chosen split criterion. In the case of splitting by entropy, the features would
be sorted by information gain and hence, indicate which variables carry the most
information about the target.

Figure 1.6 shows the feature importance fitted by a tree-based ensemble classifier using
the entropy criterion from the UCI wine recognition dataset:

Figure 1.6: A tree-based ensemble classifier using the entropy criterion

Performing descriptive data exploration | 15

The lines represent variations in the information gain of features between individual
trees. This output is a great first step to further data analysis and exploration in order of
feature importance.

Here is another popular approach to discovering the separability of your dataset. Figure
1.7 shows two graphs—one that is linearly separable (left) and one that is not separable
(right)—show a dataset with three classes:

Figure 1.7: The graphs showing the separability of the dataset

You can see this when looking at the three clusters and the overlaps between these
clusters. Having clearly separated clusters means that a trained classification model will
perform very well on this dataset. On the other hand, when we know that the data is
not linearly separable, we know that this task will require advanced feature engineering
and modeling to produce good results.

The preceding figure showed two datasets in two dimensions; we actually used the
first two feature dimensions for visualization. However, high-dimensional most data
cannot be easily and accurately visualized in two dimensions. To achieve this, we need
a projection or embedding technique to embed the feature space in two dimensions.
Many linear and non- linear embedding techniques to produce two-dimensional
projections of data exist; here are the most common ones:

• Principal Component Analysis (PCA)

• Linear Discriminant Analysis (LDA)

• t-Distributed Stochastic Neighbor Embedding (t-SNE)

• Uniform Manifold Approximation and Projection (UMAP)

16 | Building an end-to-end machine learning pipeline in Azure

Figure 1.8 shows, the LDA (left) and t-SNE (right) embeddings for the 13-dimensional
UCI wine recognition dataset (https://archive.ics.uci.edu/ml/datasets/wine). In the
LDA embedding, we can see that all the classes should be linearly separable. That's a
lot we have learned from using two lines of code to plot the embedding before we even
start with model selection or training:

Figure 1.8: LDA (left) and t-SNE (right) embeddings for the 13-dimensional UCI wine recognition dataset

Both the LDA and t-SNE embeddings are extremely helpful for judging the separability
of the individual classes and hence the difficulty of your classification task. It's always
good to assess how well a particular model will perform on your data before you start
selecting and training a specific algorithm. You will learn more about these techniques
in Chapter 3, Data experimentation and visualization using Azure.

Exploring common techniques for data preparation
After the data experimentation phase, you should have gathered enough knowledge
to start preprocessing the data. This process is also often referred to as feature
engineering. When coming from multiple sources, such as applications, databases, or
warehouses, as well as external sources, your data cannot be analyzed or interpreted
immediately.

It is, therefore, of imminent importance to preprocess data before you choose a model
to interpret your problem. In addition to this, there are different steps involved in data
preparation, which depend on the data that is available to you, such as the problem you
want to solve, and with that, the ML algorithms that could be used for it.

https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/wine

Exploring common techniques for data preparation | 17

You might ask yourself why data preparation is so important. The answer is that
the preparation of your data might lead to improvements in model accuracy when
done properly. This could be due to the relationships within your data that have
been simplified due to the preparation. By experimenting with data preparation, you
would also be able to boost the model's accuracy later on. Usually, data scientists
spend a significant amount of their time on data preparation, feature engineering,
and understanding their data. In addition to this, data preparation is important for
generating insights.

Data preparation means collecting data, cleaning it up, transforming the data, and
consolidating it. By doing this, you can enrich your data, transform it, and as mentioned
previously, improve the accuracy of your model. In fact, in many cases, an ML model's
performance can be improved significantly through better feature engineering.

The challenges that come along with data preparation are, for example, the different file
formats, the data types, inconsistency in data, limited or too much access to data, and
sometimes even insufficient infrastructure around data integration. Another difficult
problem is converting text, such as nominal or ordinal categories or free text, into a
numeric value.

The way people currently view data preparation and perform this step of the process
is through the extract, transform, and load tools. It is of utmost importance that data
within organizations is aligned and transformed using various data standards. Effective
integration of various data sources should be done by aligning the data, transforming it,
and then promoting the development and adoption of data standards. All this effectively
helps in managing the volume, variety, veracity, and velocity of the data.

In the following subparagraphs, some of the key techniques in data preparation, such as
labeling, storing, encoding, and normalizing data, as well as feature extraction, will be
shown in more depth.

Labeling the training data

Let's start with a bummer; the first step in the data preparation journey is labeling,
also called annotation. It is a bummer because it is the least exciting part of an ML
project, yet one of the most important tasks in the whole process. Garbage in, garbage
out—it's that simple. The ultimate goal is to feed high-quality training data into the ML
algorithms, which is why labeling training data is so important.

While proper labels greatly help to improve prediction performance, the labeling
process will also help you to study the dataset in greater detail. However, let me clarify
that labeling data requires deep insight and understanding of the context of the dataset
and the prediction process. If we were aiming to predict breast cancer using CT scans,
we would also need to understand how breast cancer can be detected in CT images in
order to label the data.

18 | Building an end-to-end machine learning pipeline in Azure

Mislabeling the training data has a couple of consequences, such as label noise, which
you want to avoid as it will the performance of every downstream process in the ML
pipeline, such as feature selection, feature ranking and ultimately model performance.
Learning relies crucially on the accuracy of labels in the training dataset. However, we
should always take label noise into account when aiming for a specific target metric
because it's highly unlikely that all the provided labels will be absolutely precise and
accurate.

In some cases, your labeling methodology is dependent on the chosen ML approach for
a prediction problem. A good example is the difference between object detection and
segmentation, both of which require completely differently labeled data. As labeling for
segmentation is much more time-consuming than labeling for object detection or even
classification, it is also an important trade-off to make before starting an ML project.

There are some techniques you can use to speed up the labeling process, which are
hopefully provided by your labeling system:

• Supervised learning: Through supervised learning, an ML model could
recommend the correct labels for your data at labeling time. You can then decide
whether you use the predicted label or choose a different or modified label. This
works very well with object detection and image data.

• Active learning: Another technique to accelerate the labeling process is to allow
a semi-supervised learning process to learn and predict based on a few manually
labeled samples. Using those labeled samples, the model automatically proposes
new labels that can either be accepted or changed and modified. Each label will
fine-tune the model to predict better labels.

• Unsupervised learning: Through clustering similar data samples together, the
labeling environment can prioritize which data points should be labeled next.
Using these insights, the labeling environment can always try to propose loads of
greatly varying samples in the training data for manual labeling.

Labeling is a necessary, long, and cost-intensive step in an ML process. There are
techniques to facilitate labeling; however, they always require the domain knowledge to
be carried out properly. If there is any chance that you can collect labeled data through
your application directly, you are very lucky and should start collecting this data. A good
example is collecting training data for a click-through rate of search results based on
the actual results and clicks of real users.

Exploring common techniques for data preparation | 19

Normalization and transformation in machine learning

Normalization is a common data preprocessing technique where the data is scaled to a
different value range through a (linear) transformation. For many statistical ML models,
the training data needs to follow a certain distribution and so it needs to first be
normalized along all its dimensions. The following are some of the most commonly used
methods to normalize data:

• Scaling to unit length, or standard scaling

• Minimum/maximum scaling

• Mean normalization

• Quantile normalization

In addition to these, you can also monitor normalization by ensuring the values fall
between 0 and 1 in the case of probability density functions, which are used in fields
such as chemistry. For exponential distribution and Poisson distribution, you could use
the coefficient of variation because it deals well with positive distributions.

Note

In ML algorithms such as Support Vector Machines (SVM), logistic regression,
and neural networks, a very common normalization technique is standardization,
which standardizes features by giving them a 0 mean and unit variance. This is
often referred to as a standard scaler.

Besides linear transformations, it's also quite common to apply non-linear
transformations to your data for the same reason as for normalization, which is to
pass the assumption for a specifically required distribution. If your data is skewed,
you can use power or log transformations to normalize the distributions. This is very
important, for example, for linear models where the normality assumption is a required
conditional to the predictor's vector. For highly skewed data, you can also apply these
transformations multiple times. For data ranges containing 0, it's also common to apply
log plus 1 transformations to avoid numerical instability.

20 | Building an end-to-end machine learning pipeline in Azure

Encoding categorical variables

With a real-world dataset, you will quickly reach the limits of normalization and
transformation as the data for these transformations needs to be continuous. The
same is true for many statistical ML algorithms, such as linear regression, SVM, or
neural networks; the input data needs to be numerical. Hence, in order to work with
categorical data, we need to look at different numerical encoding techniques.

We differentiate between three different types of categorical data: ordinal, nominal,
and textual (for example, free text). We make this distinction between nominal and
textual data as textual data is often used to extract semantic meaning whereas nominal
categorical data is often just encoded.

There are various types of numerical encoding techniques you could use. They are
listed here:

• Label encoding: This is where each category is mapped to a number or label. The
labels for the categories are not related to each other; therefore, categories that
are related will lose this information after encoding.

• One-hot encoding: Another popular approach is dummy coding, also called one-
hot encoding. Each category is replaced with an orthogonal feature vector, where
the dimension of the feature vector is dependent on the number of distinct values.
This approach is not efficient with high cardinality features.

• Bin encoding: Even though bin encoding is quite similar to one-hot encoding, it
differs from storing categories as binary bitstrings. The goal of bin encoding is to
hash the cardinalities into binary values and each binary digit gets one column.
This will result in some information loss; however, you can deal with fewer
dimensions. It also creates fewer columns and so the speed of learning is higher
and more memory efficient.

• Count encoding: In count encoding, we replace the categorical values with
the relative or absolute count of the value over the whole training set. This is a
common technique for encoding large amounts of unique labels.

• Target encoding: In this encoding methodology, we replace the categorical value
with the mean value of the target variable of this category. This is also effective
with high-cardinality features.

• Hashing encoding: This is used when there are a lot of large-scale categorical
features. The hash function maps a lot of values into a small, finite set of values.
Different values could create the same hash, which is called a collision.

We will take a closer look at some of these encoding techniques in Chapter 6, Advanced
feature extraction with NLP.

Exploring common techniques for data preparation | 21

A feature engineering example using time-series data

Feature engineering is strongly dependent on the domain of your dataset. When dealing
with demographics or geographics, you can model personas and demographic metrics
or join geographic attributes, such as proximity to a large city, or to the border, GDP,
and others. Let's look at an example of time-series data, which is extremely common in
real- world examples.

Many real-world datasets have a temporal dependency and so they store the date and
time in at least one of the dimensions of the training data. This date-time field can
be treated either as an encoded or an ordinal categorical variable, depending on the
distribution of the date-time variable.

Depending on the distribution and patterns in the date-time data, you want to
transform the date-time field into different values that encode a specific property of
the current date or time. The following are a few features that can be extracted from
date-time variables:

• The absolute time

• The hour of the day

• The day of the week

• The day of the month

• The day of the year

• The month of the year

If you see a periodic relationship between a dimension over time, you can also encode
the cycle features of the time dimension. This can be achieved by computing the
absolute hour of the day to compute the sine and cosine components of the normalized
hour of the day. Using this technique, the resulting values will contain a cyclic
dependency on the encoded date-time dimension.

Another great way of improving your model's performance is to include additional data
in your training data. This works really well on the date-time dimension as you can, for
example, join public holidays, public events, or other types of events by date. This lets
you create features such as the following:

• The number of days until or since the next or last campaign

• The number of days until or since the next or last holiday

• Mark a date as a public holiday

• Mark a date as a major sporting event

22 | Building an end-to-end machine learning pipeline in Azure

As you can see, there are many ways to transform and encode date-time variables. It is
encouraged to dive into the raw data and look for visual patterns in the data that should
be interpreted by the ML model. Whenever you deal with a date-time dimension, there
is room for creative feature engineering.

Using NLP to extract complex features from text

Using NLP to extract features from text is very useful as an input for ML models. NLP
is used to apply ML algorithms to text and speech and is often used to preprocess raw
text data and categorical embeddings. We often distinguish between occurrence-based
embeddings, such as bag-of-words, and semantic embeddings, such as Word2Vec. NLP
is extremely useful for any time that you are dealing with textual data.

Similar to categorical embeddings, NLP techniques transform text into numerical
values. These values are often high-dimensional and need to be simplified—commonly
done through Singular Value Decomposition (SVD)—or aggregated. Some popular
techniques that are used in NLP to extract features from text are as follows:

• Lemmatization, stemming, and stop-word removal n-grams

• tf-idf

• Embeddings, such as Word2vec

• Fully trained models, such as sequence-to-sequence models

If we aim to convert text to numerical values, we can practically implement encodings
using bag-of-words predictors, Word2Vec embeddings, or sequence-to-sequence
models. The same idea can be extended to documents where instead of learning feature
representations for words, you learn them for documents.

We will take a closer look at feature extraction through NLP and all the previously
mentioned techniques in Chapter 6, Advanced feature extraction with NLP.

Choosing the right ML model to train data
Similar to data experimentation and preprocessing, training ML model is an analytical,
step-by-step process. Each step involves a thought process that evaluates the pros and
cons of each algorithm according to the results of the experimentation phase. Like in
every other scientific process, it is recommended that you come up with a hypothesis
first and verify whether this hypothesis is true afterward.

Choosing the right ML model to train data | 23

Let's look at the steps that define the process of training an ML model:

• Define your ML task: First, we need to define the ML task we are facing,
which most of the time is defined by the business decision behind your use
case. Depending on the amount of labeled data, you can choose between
non-supervised, semi-supervised, and supervised learning, as well as many other
subcategories.

• Pick a suitable model to perform this task: Pick a suitable model for the chosen
ML task. This includes logistic regression, a gradient-boosted tree ensemble,
and a deep neural network, just to name a few popular ML model choices. The
choice is mainly dependent on the training (or production) infrastructure (such as
Python, R, Julia, C, and so on) and on the shape of the data. It is recommended that
you favor simple traditional ensemble techniques, such as gradient-boosted tree
ensembles, when training data is limited. These models perform well on a broad
set of input values (ordinal, nominal, and numeric) as well as training efficiently
and they are understandable. When strong generalization and expressiveness
is required, and given a reasonable amount of training data, you should go with
deep learning models. When limited data is available to build a highly complicated
model (for example, for object detection), it is recommended you use pre-trained
models as feature extractors and only train the classifiers on top. However,
whenever possible, it is recommended you build on top of pre- trained models
when deep learning techniques are used.

• Pick a train-validation split: Splitting your data into a training and validation set
gives you additional insights in the performance of your training and optimization
process. This includes a group shuffle split, temporal split, stratified split, and so
on.

• Pick or implement an error metric: During the data experimentation phase,
you should have already come up with a strategy on how to test your model's
performance. Hence, you should have picked a validation split and error metric
already. If you have not done so, I recommend you evaluate what you want to
measure and optimize (such as absolute errors, relative errors, percentages, true
positive rates, true negative rates, and so on). This includes F1-score, MSE, ROC,
weighted Cohen's kappa, and so on.

• Train a simple model using cross-validation: Finally, when all the preceding
choices are made, you can go ahead and train your ML model. Optimally, this is
done as cross-validation on a training and validation set, without leaking training
data into validation. After training a baseline model, it's time to interpret the error
metric of the validation runs. Does it make sense? Is it as high or low as expected?
Is it (hopefully) better than random and better than always predicting the most
popular target? What's the influence of the random seed on this result?

24 | Building an end-to-end machine learning pipeline in Azure

Once the answers to these questions are gathered, you can go back to the fun part:
improving the model performance—by data analysis, feature engineering and data
preprocessing.

Choosing an error metric

After looking at the relationship between the feature and target dimensions, as well as
the separability of the data, you should continue to evaluate which error metric will
be used to train the ML model later on. There are many metric choices that measure
absolute, squared, and percentage errors for regression, as well as the accuracy, true
positive rate, true negative rate for classification, and weighted distance metrics for
ordinal categories—just to name a few.

Note

Defining an appropriate error metric for an optimization problem is not
straightforward as it depends on multiple circumstances. In a classification
problem, for example, we are confronted with the precision- recall dilemma, you
can either optimize for maximal precision (and hence minimize false positives) or
for maximal recall (and hence maximize true positives). Either decision will result in
a different model with opposite strengths and weaknesses.

Many machine learning practitioners don't value the importance of a proper error
metric highly enough but instead go with the default metric for their use case (for
example, accuracy, mean squared error, and so on). If you find yourself in this trap,
remember the importance of the right error metric. The choice of error metric is
absolutely critical and might even result in your ML use case succeeding or failing.

Before diving into model training and optimization—which includes tasks such as model
selection and parameter tuning—it is useful to understand the baseline performance
and the model's robustness to noise. The first can be achieved by computing the error
metric using only the target variable with the highest occurrence as a prediction—this
will be your baseline performance. The second can be done by modifying the random
seed of your ML model (for example, the tree-based model used for feature importance)
and observing the changes to the error metric. This will show you what decimal place
you can trust the error metric to.

Choosing the right ML model to train data | 25

The training and testing split

Once you have selected an ML approach and an error metric, you need to think
about splitting your dataset for training. Optimally, the data should be split into three
disjointed sets: a training, a validation, and a testing set. We use multiple sets to ensure
that the model generalizes well on unseen data and that the reported error metric can
be trusted. Hence, you can see that dividing the data into representative sets is a task
that should be performed as an analytical process.

You need to avoid training data leaking into the validation or testing set, hence
overfitting the training data and skewing the validation and testing results, at all costs.
To ensure this, you need to always create disjointed datasets and use the validation set
for cross-validation and parameter tuning and the testing set only for reporting your
final model performance.

There are many different techniques available, such as stratified splitting (sampling
based on class distributions), temporal splitting, and group-based splitting. We will take
a look at these in Chapter 7, Building ML models using Azure Machine Learning.

Achieving great performance using tree-based ensemble models

Many amazing traditional ML approaches exist, such as naive Bayes SVM, and linear
regression. However, there is one technique that, due to its flexibility, gets you started
quickly while delivering great prediction performance without a ton of tuning and data
preparation. While most decision tree-based ensemble estimators fit this description,
we want to look at one in particular: gradient-boosted trees.

In the previous section, we mentioned that building a baseline model for estimating the
baseline performance is a good start to every ML project. Indeed, we will see in many
chapters that building a baseline model helps you focus on all the important aspects of
your project, such as the data, infrastructure, and automation.

Decision trees are extremely versatile. They can be used with numerical and categorical
data as input and can predict both continuous and categorical values. Tree-based
ensemble models combine many weak learners into a single predictor based on
decision trees. This greatly reduces the problem of the overfitting and instability of
single decision trees. When boosting, we use an iterative approach to optimize the
model performance by weighting misclassified training samples after each training
iteration. The output after a few iterations using the default parameter usually delivers
great baseline results for many different applications.

In Chapter 7, Building ML models using Azure Machine Learning, we have dedicated
a complete section to training a gradient-boosted tree-ensemble classifier using
LightGBM, a popular tree-ensemble library from Microsoft.

26 | Building an end-to-end machine learning pipeline in Azure

Modeling large and complex data using deep learning techniques

To capture the meaning of large amounts of complex training data, we need large
parametric models. However, training parametric models with many hundreds of
millions of parameters is no easy task, due to exploding and vanishing gradient, loss
propagation through such a complex model, numerical instability, and normalization. In
recent years, a branch of such high parametric models achieved extremely good results
through many complex tasks—namely, deep learning.

Deep neural networks work extremely well on complex prediction tasks with large
amounts of complex input data. Most models combine both the feature extractor and
classification/regression parts and are trained in a fully end-to-end approach. Fully
connected neural networks—also called Artificial Neural Networks (ANNs)—work very
similar to logistic regression models, with a different loss function and the stacking
of multiple layers. Convolutional Neural Networks (CNNs) use local constraint
connections with shared weights to remove the number of required parameters while
taking advantage of data locality. They work extremely well with image data where
the convolution and pooling layers correspond to classical computer vision filters and
operators.

Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) layers
help to model time dependency by keeping a state over time. Most model architectures
can take advantage of parallel computing through General Programming Graphical
Processing Units (GPGPU), or even virtualized or dedicated deep learning hardware.

Chapter 8, Training deep neural networks on Azure, and Chapter 10, Distributed machine
learning on Azure, are dedicated to training large, complex deep learning models on a
single machine and distributed GPU clusters.

Optimization techniques
If we have trained a simple ensemble model that performs reasonably better than
the baseline model and achieves acceptable performance according to the expected
performance estimated during data preparation, we can progress with optimization.
This is a point we really want to emphasize. It's strongly discouraged to begin model
optimization and stacking when a simple ensemble technique fails to deliver useful
results. If this is the case, it would be much better to take a step back and dive deeper
into data analysis and feature engineering.

Common ML optimization techniques, such as hyperparameter optimization,
model stacking, and even automated machine learning, help you get the last 10% of
performance boost out of your model while the remaining 90% is achieved by a single
ensemble model. If you decide to use any of those optimization techniques, it is advised
to perform them in parallel and fully automated on a distributed cluster.

Optimization techniques | 27

After seeing too many ML practitioners manually parametrizing, tuning, and stacking
models together, we want to raise the important message that training and optimizing
ML models is boring. It should rarely be done manually as it is much faster to perform
it automatically as an end-to-end optimization process. Most of your time and effort
should go into experimentation, data preparation, and feature engineering—that
is, everything that cannot be easily automated and optimized using raw compute
power. Prior knowledge about the data and an understanding of the ML use case and
the business insights are the best places to dig deeper into when investing time in
improving the model performance.

Hyperparameter optimization

Once you have achieved reasonable performance using a simple single model with
default parameterization, you can move on to optimizing the hyperparameters of the
model. Due to the combination and complexity of multiple parameters, it doesn't make
a lot of sense to waste time on tuning the parameters by hand. Instead, this tuning
should always be performed in an optimal automated way, which will always lead to a
better cross- validation performance.

First, you need to define the parameter search space and sampling distribution for each
trainable hyperparameter. This definition is either a continuous or categorical region
with different sampling distributions; for example, uniform, logarithmic, or normal
distributed sampling. This can usually be done by generating a parameter configuration
using a hyperparameter optimization library.

The next thing you need to decide is the sampling technique of parameters in the
search space. The three most common sampling and optimization techniques are the
following:

• Grid sampling

• Random sampling

• Bayesian optimization

While the first two algorithms sample either in a grid or at random in the search space,
the third algorithm performs a more intelligent search through Bayesian optimization.
In practice, random and Bayesian sampling are used most often.

Note

To avoid any unnecessary compute time spent on wrong parameter configurations,
it is recommended to define early stopping criteria when using hyperparameter
optimization.

28 | Building an end-to-end machine learning pipeline in Azure

Training many combinations of different parameter sets is a computationally complex
task. Hence, it is strongly recommended to parallelize this task on multiple machines
and track all parameter combinations and model cross-validation performance at
a central location. This is a particularly beneficial task for a highly scalable cloud
computing environment where these tasks are performed automatically. In Azure
Machine Learning, you can use the HyperDrive functionality to do exactly this. We
will look at this in great detail in Chapter 9, Hyperparameter tuning and Automated
Machine Learning.

Model stacking

Model stacking is a very common technique used to improve prediction performance
by putting a combination of multiple models into a single stacked model. Hence, the
output of each model is fed into a meta-model, which itself is trained through cross-
validation and hyperparameter tuning. By combining significantly different models into
a single stacked model, you can always outperform a single model.

Figure 1.9 shows a stacked model consisting of different supervised models in level 1
that feed their output into another meta-model. This is a common architecture that
further boosts prediction performance once all the feature engineering and model
tuning options are fully exploited:

Figure 1.9: Model stacking

Model stacking adds a lot of complexity to your ML process while almost always leading
to better performance. This technique will get out the last 1% performance gain of your
algorithm. To efficiently stack models into a meta ensemble, it is recommended that
you do it fully automated; for example, through techniques such as Azure Automated
Machine Learning. One thing to be aware of, however, is that you can easily overfit the
training data or create stacked models that are magnitudes larger in size than single
models.

Deploying and operating models | 29

Azure Automated Machine Learning

As we have shown, constructing ML models is a complex step-by-step process that
requires a lot of different skills, such as domain knowledge (prior knowledge that allows
you to get insight into data), mathematical expertise, and computer science skills.
During this process, there is still human error and bias involved, which might not only
affect the model's performance and accuracy, but also the insights that you want to gain
out of it.

Azure Automated Machine Learning could be used to combine and automated all of this
by reducing the time to value. For several industries, automated machine learning can
leverage ML and AI technology by automating manual modeling tasks, such that the
data scientists can focus on more complex issues. Particularly when using repetitive
ML tasks, such as data preprocessing, feature engineering, model selection, parameter
tuning and model stacking, it could be useful to use Azure Automated Machine
Learning.

We will go into much more detail and see real-world examples in Chapter 9,
Hyperparameter tuning and Automated Machine Learning.

Deploying and operating models
Once you have trained and optimized an ML model, it is ready for deployment. Many
data science teams, in practice, stop here and move the model to production as a
Docker image, often embedded in a REST API using Flask or similar frameworks.
However, as you can imagine, this is not always the best solution depending on your use
case requirements. An ML or data engineer's responsibility doesn't stop here.

The deployment and operation of an ML pipeline can be best seen when testing
the model on live data in production. A test is done to collect insights and data to
continuously improve the model. Hence, collecting model performance over time is an
essential step to guaranteeing and improving the performance of the model.

In general, we differentiate two architectures for ML-scoring pipelines, which we will
briefly discuss in this section:

• Batch scoring using pipelines

• Real-time scoring using a container-based web service

These architectures are discussed in increasing order of operational complexity, with
offline scoring being the least complex and asynchronous scoring being the more
complex system. The complexity arises from the number of components involved in
operating such a pipeline at scale.

30 | Building an end-to-end machine learning pipeline in Azure

Finally, we will investigate an efficient way of collecting runtimes, latency, and other
operational metrics, as well as model performance. It's also good practice to log all
scored requests in order to analyze and improve an ML model over time.

Both architectures, as well as the monitoring solutions, will be discussed in more detail
and implemented in Chapter 12, Deploying and operating machine learning models.

Batch scoring using pipelines

With offline scoring, or batch scoring, we are talking about an offline process where
you evaluate an ML model against a batch of data. The result of this scoring technique is
usually not time-critical and the data to be scored is usually larger than the model. This
process is usually used when an ML model is scored within another batch process, such
as a daily, hourly, or weekly task.

Here is what we expect as input and output data:

• Input: A location to find the input data

• Output: A response with all the scores

While the input and output format is quite intuitive, we still want to give a list of
examples of when such an architecture is used. The reason for this is that you can
decide the proper architecture for your use case when dealing with a similar ML task.
Here are some practical examples:

• A recommendation engine of a streaming service generates new recommendations
every week for the upcoming week.

• A classification algorithm of a mobile telecommunication operator computes a
churn score for every customer once a month.

If the model was trained on a distributed system, it is very common to perform batch
scoring on the same system that was used for training as the scoring task is identical to
computing the score for the test set.

Deploying and operating models | 31

Real-time scoring using a container-based web service

The term online synchronous scoring, or real-time scoring, refers to a technique
where we score an ML model and instantly need the resulting score. This is very
common in stream processing, where single events are scored in real time. It's obvious
that this task is highly time-critical and the execution is blocked until the resulting
score is computed.

Here is what we expect as input and output data:

• Input: One or multiple observations

• Output: A response with a single score

The input and output configuration is also quite intuitive. Here are some practical
examples of typical real-time scoring use cases:

• An object detection algorithm in a self-driving vehicle detects obstacles so it can
control and steer the vehicle safely around the objects.

• An object detection algorithm detects faces in a camera image and focuses the
camera.

• A classification algorithm decides whether the current product on the conveyor
meets the quality standards.

Models for online synchronous scoring services are often deployed to the cloud as
parallelized services in a distributed cluster with a load balancer in front of them. This
way, the scoring cluster can be easily scaled up or down when higher throughput is
required. If the latency requirements are restricted, these models are also deployed to
edge devices, such as mobile phones or industrial computers, in order to avoid a round
trip of the data to the nearest cloud region.

32 | Building an end-to-end machine learning pipeline in Azure

Tracking model performance, telemetry, and data skew

Tracking the proper metrics of a deployed ML model is essential. While popular metrics
about include consumed CPU time, RAM, GPU memory, as well as latency, we also
want to focus on the model's scoring performance. As we have already seen, most real-
world data has a dependency on time and so many habits change over time. Operating
an ML model in production means also continuously guaranteeing the quality and
performance of the model.

In order to track the model's performance, you can use a standard application
monitoring tool, such as Azure Application Insights or any other highly scalable
key-value database. This is important to understand how your users are using your
model and what your model is predicting in production.

Another important insight is tracking the data used for scoring the model. If we keep
this data, we can compare it to the training data used for the deployed model and
compute the data skew between the training data and the scoring data. By defining
a threshold for maximum model skew, we can use this as a trigger to re-train the
model once the skew is too big. We will see this in action in Chapter 12, Deploying and
operating machine learning models.

Summary
In this chapter, we saw an overview of all the steps involved in making a custom ML
pipeline. You might have seen familiar concepts for data preprocessing or analytics
and learned an important lesson. Data experimentation is a step-by-step approach
rather than an experimental process. Look for missing values, data distribution, and
relationships between features and targets. This analysis will greatly help you to
understand which preprocessing steps to perform and what model performance to
expect.

You now know that data preprocessing, or feature engineering, is the most important
part of the whole ML process. The more prior knowledge you have about the data,
the better you can encode categorical and temporal variables or transform text to
numerical space using NLP techniques. You learned that choosing the proper ML
task, model, error metric, and train-test split is mostly defined by business decisions
(for example, object detection against segmentation) or a performance trade-off (for
example, stacking).

Using your newly acquired skills, you should now be able to draft an end-to-end ML
process and understand each step from experimentation to deployment. In the next
chapter, we will look at an overview of which specific Azure services can be used to
efficiently train ML models in the cloud.

In the previous chapter, we learned what an end-to-end Machine Learning (ML)
process looks like. We went through the different steps, from data exploration to data
pre-processing, training, optimization, deployment, and operation. In this chapter,
we want to find out how to best navigate through all available ML services in Azure
and how to select the right one for your goal. Finally, we will explain why the Azure
Machine Learning is the best choice for building custom ML models. This is the service
that we will use throughout the book to implement an end-to-end ML pipeline.

First, we will take a look at the different Azure services for ML and Artificial
Intelligence (AI), and discuss their differences and similarities. Some of the services will
be completely managed with little flexibility, whereas other services will give you great
flexibility but not everything will be managed. We will also take a look into the different
execution runtimes and compute targets.

Choosing a machine
learning service

in Azure

2

36 | Choosing a machine learning service in Azure

In the next section, we jump right into Azure Cognitive Services, a pre-trained ML
endpoint for many domains and prediction tasks. We will then cover customized
Cognitive Services, which is a way to fine-tune a Cognitive Service for a specific task or
domain. The Custom Vision tool is a great example of a customizable computer vision
service.

Next, we will cover ML tools with Graphical User Interfaces (GUIs) in Azure. The
best tool for building ML workflows in Azure is Azure Machine Learning designer, the
successor of the popular service Azure ML Studio (classic). It is easy to use and has tight
integration into the Azure Machine Learning workspace. We will also take a look at
Azure Automated Machine Learning (especially the visual interface) and its advantages
over Azure Machine Learning designer.

Finally, in the last section, we will cover the basics of Azure Machine Learning, the
tool that we will use throughout this book to build a fully automated end-to-end ML
pipeline in Azure. Besides the main terminology and functionality, we will also propose
how to gradually move an existing ML project to Azure Machine Learning. This will give
you the same benefits as starting a completely new project in Azure Machine Learning,
ranging from model tracking to automated deployments and auto-scaling training
clusters.

The following topics will be covered in this chapter:

• Demystifying the different Azure services for ML

• Azure Cognitive Services and Custom Vision

• Azure Machine Learning with GUIs

• Azure Machine Learning workspace

Let's jump right in and start demystifying the different Azure services for AI and ML!

Demystifying the different Azure services for ML
Azure offers many services that can be used to perform ML – you can use a simple
Virtual Machine (VM), a pre-configured VM for ML (also called Data Science Virtual
Machine (DSVM)), Azure Notebooks using a shared free kernel, or any other service
that gives you compute resources and data storage. Due to this flexibility, it is often
very difficult to navigate through these services and pick the correct service for
implementing an ML pipeline. In this section, we will provide clear guidance about how
to choose the optimal ML and compute services in Azure.

Demystifying the different Azure services for ML | 37

First, it is important to discuss the difference between a simple compute resource, an
ML infrastructure service, and an ML modeling service. This distinction will help you
to better understand the following sections about how to choose these services for a
specific use case:

• A compute resource can be any service in Azure that provides you with computing
power, such as VMs, managed clusters of VMs (Azure Batch, Azure Databricks, and
so on), container execution engines (Azure Kubernetes Services, Azure Container
Instance, Azure Functions, Azure IoT Edge, and so on), or hybrid compute
services such as App Service. This service is usually used for experimentation or is
managed from an ML infrastructure service.

• An ML infrastructure service helps you implement, orchestrate, automate, and
optimize your ML training, pipelines, and deployments. Using such a service, you
would usually implement your own preprocessing and ML algorithms using your
own frameworks. However, the service would support you with infrastructure for
the training, optimization and deployment process. Azure Machine Learning is
a service in Azure that falls into this category and will be the service that we use
throughout this book.

• Finally, an ML modeling service is a service that helps you to create or use ML
models without writing your own code. Services such as Cognitive Services, Azure
Automated Machine Learning, Azure Machine Learning designer, and Custom
Vision can be found in this category. While this division into three different
categories might seem intuitive, there are many overlaps between the services,
such as the graphical model designer in Azure Machine Learning, and others.

The following pipeline is a typical choice of Azure Machine Learning and compute
services in a real-world example for a predictive quality model that can be deployed on
an on-premise edge device for stream processing:

• Track experiments, pipelines, trained models, and containers using Azure Machine
Learning

• Run experiments in Azure Notebook using a DSVM

• Preprocess a large dataset using Azure Databricks

• Label the dataset using Custom Vision

• Create an object detection mode without code using Custom Vision

• Deploy the model to Azure IoT Edge

38 | Choosing a machine learning service in Azure

As you can see, there are many ways to combine services to build a pipeline. There are
many different aspects to consider when choosing the best ML and compute services
for an ML use case, which depend greatly on the problem statement, domain, team,
skills, preferences, budget, and so on. Evaluating the trade-offs for every use case is an
essential task when comparing the different services.

Choosing an Azure service for ML

Let's start with choosing a service for ML and hence, a service to implement,
orchestrate, and augment your ML pipeline. The trade-offs are similar when
evaluating a managed Platform-as-a-Service (PaaS) offering versus the more flexible
Infrastructure-as-a-Service (IaaS) software. In general, the Azure Machine Learning
can be ordered by increasing flexibility and operational effort. Here is a list in sorted
order of its flexibility and operational effort:

• A fully managed service with pre-trained models for scoring only.

• A managed service with pre-trained models and customization through transfer
learning.

• A managed service with GUI to experiment, build, train, and deploy models.

• A managed service to orchestrate compute resources and facilitate ML processes.

• Individual compute services to experiment, train, and deploy models.

Before we look into a decision tree that helps you to decide which service to use, you
should think about the trade-off between flexibility and operational complexity.

Consuming an object detection algorithm through an API is many magnitudes easier,
faster, and cheaper than training and deploying your own object detection model.

However, if you need the flexibility of choosing a specific model or algorithm that is not
supported as a service (for example, segmentation), then you don't have a choice but to
implement it on your own.

A good rule of thumb is to always prefer a managed and trained ML service when
possible. If this is not possible, you should evaluate whether the ML algorithm can
be consumed as a service and fine-tuned for your domain or if it has to be built from
scratch. If the model has to be built, then the next step to consider is whether it should
be done from within a GUI or programmatically. Ultimately, if the model is trained
programmatically, you need to choose the underlying data storage and compute
infrastructure. Our advice is to choose or build on top of pre-trained APIs and models
whenever possible.

Demystifying the different Azure services for ML | 39

Figure 2.1 shows the guideline toward choosing the correct ML service according to the
logic that we've just discussed:

Figure 2.1: Guidelines for choosing an Azure Machine Learning service

According to the previous diagram, we are asking the following question: Can you
consume a pre-trained model or do you have to build a custom model on your own?

This is the first and most important question to ask yourself. Does the ML problem you
are trying to solve already exist, and did someone already solve it? If, for example, you
want to detect faces in images, you could use an existing pre-trained model from the
Cognitive Services API rather than building, training, and deploying this functionality on
your own. As a rule of thumb, if you are working with vision, language (audio), or text,
the chance is high that such a model already exists.

If you are building on top of an existing algorithm but for a specialized domain, you
can use custom Cognitive Services to fine-tune a pre-trained model for your domain.
If you want to detect faulty products on a production line using camera images, you
can use Custom Vision for fine-tuning the Vision Cognitive Service API for the domain
of your products. The same rule of thumb is true for custom Cognitive Services: if you
are working with vision, language (audio), or text, the chance is high that such a model
already exists and can be fine-tuned.

In both of the previous cases, you don't have to implement a full end-to-end ML
pipeline on your own but rather can consume the service as a fully managed API or
service. Likewise, when you are developing a completely new model, you have to
manage your ML pipeline on your own. As a rule of thumb, if you are working with
Internet-of-Things (IoT) sensor data (and you're doing more than statistical anomaly
detection), you most likely need to build the prediction model on your own.

40 | Choosing a machine learning service in Azure

In Azure, you have various choices to build your end-to-end ML pipelines for training,
optimizing, and deploying custom ML models:

• Build your own tools

• Use open source tools, such as Azure Databricks with ML Flow

• Use a GUI tool, such as Azure Machine Learning designer

• Use Azure Machine Learning

While we completely understand that it sounds like a lot of fun to build your custom
solution on top of open source tools, or that it sounds easy to start with a GUI tool,
we strongly advise you to first look into Azure Machine Learning. It is a really fantastic
service that provides you with a common workspace for all your ML experiments,
pipelines, compute resources, datasets, Conda environments, Docker images, and
trained models, and a comprehensive SDK to interact with these resources. Hence, it is
an excellent choice as your ML infrastructure service.

In Azure Machine Learning, you can decide between code-first usage through the
Python SDK or a GUI tool Azure Machine Learning designer which is replacing the
deprecated Azure ML Studio (classic) service. It's worth mentioning that the SDK
is absolutely brilliant and offers more functionality than the GUI or the service
accessed via the Azure portal. It also helps you a lot to automate and orchestrate your
infrastructure. Hence, we strongly recommend you to build your ML infrastructure
through the Azure Machine Learning SDK.

Note

If you are not a Python user, the Azure Machine Learning SDK is also available for
the R language.

If you are still not convinced, let me give you a teaser of what you can do from within a
Python script or Notebook with a few lines of code:

1. Create and start an auto-scaling training cluster using GPUs.

2. Submit multiple training experiments to the cluster and track their results.

3. Store the best models in the model registry.

4. Create an Azure Kubernetes cluster.

Demystifying the different Azure services for ML | 41

5. Deploy the best model from your experiments to the Kubernetes cluster.

6. Shut down and remove the GPU cluster.

7. Implement a Continuous Integration/Continuous Deployment (CI/CD) pipeline
that does all the preceding points.

If this sounds intriguing, we strongly recommend you to read the book and follow
all discussed code examples in the following chapters, as we will perform everything
mentioned in the preceding steps.

Choosing a compute target for Azure Machine Learning

In a typical ML project, you easily move between exploring data, labeling data, pre-
processing data, exploring models, training models, optimizing models, and deploying
a scoring service. Hence it probably means that you need different compute services
for the different stages in your ML pipeline, for example, training a deep learning image
recognition model has different requirements than preprocessing image data and
scoring the model for single images.

Before we jump into compute targets, we want to clarify two important terms that
we will use frequently in this book. When using the Azure Machine Learning SDK, we
usually deal with two different compute targets which both run a Python interpreter:

• The authoring runtime

• The execution runtime

The authoring runtime is a lightweight Python runtime used to call the Azure Machine
Learning SDK and orchestrate your infrastructure. You usually use the authoring
environment to create compute resources, trigger training runs, build environments,
and deploy models. No real compute is done in this environment, and hence lightweight
Python interpreters such as Visual Studio Code running Python locally, an Azure
Notebook, or a single Azure Machine Learning compute instance are commonly used.

The execution environment, on the other hand, is used to execute your ML training
or scoring code. The Python interpreter does the real work; you likely need a beefy
machine if you want to train a deep learning model. You will often use Azure Machine
Learning training cluster (also called AML Compute), Azure Kubernetes Service (AKS),
or Azure Container Instance (ACI) as execution environments.

42 | Choosing a machine learning service in Azure

In a typical workflow, you use an authoring environment to create a compute cluster
(the execution environment) through the Azure Machine Learning SDK, and then
submit the training script to this cluster again using the Azure Machine Learning SDK.
Here is a tiny example:

1. First, we create a cluster and deploy an ML training script to that cluster. This is
the code we would run in the authoring environment:

from azureml.core.compute import ComputeTarget, AmlCompute
from azureml.core.compute_target import ComputeTargetException
from azureml.train.estimator import Estimator

Create the cluster
config = AmlCompute.provisioning_configuration(
 vm_size='STANDARD_D2_V2', max_nodes=4)
cluster = ComputeTarget.create(ws, "cluster", config)
cluster.wait_for_completion(show_output=True)

Submit the training script to the cluster
estimator = Estimator(
 compute_target=cluster, entry_script='train.py',
 conda_packages=['tensorflow'])
run = experiment.submit(estimator)
run.wait_for_completion(show_output=True)

As you can see in the preceding code, we create AmlCompute cluster with 4 nodes.
Then we submit an experiment to this cluster, which is an abstraction of an
environment and a training script, train.py. Under the hood, Azure Machine
Learning will do all the work for us to create the cluster, schedule the script and
return the results.

2. On the execution environment, the Python interpreter will now run the train.
py script. This is how the script would look and what work would be done in the
execution environment. First, we pre-process the training data and convert labels
to one-hot encoded feature vectors:

import keras

Normalize training data
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255

Demystifying the different Azure services for ML | 43

Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

3. Next, we build a simple Convolutional Neural Network (CNN) architecture, using
a two-dimensional convolution with pooling, a fully connected hidden layer, and
softmax output (we will discuss similar architectures in more detail in Chapter 8,
Training deep neural networks on Azure:

from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D

model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dense(num_classes))
model.add(Activation('softmax'))

4. Next, we define an optimizer and a learning rate, and compile the Keras model:

initiate RMSprop optimizer
opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)
model.compile(loss='categorical_crossentropy',
 optimizer=opt,
metrics=['accuracy'])

5. Finally, we can train and evaluate the model:

model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs,
validation_data=(x_test, y_test), shuffle=True)

Score trained model
scores = model.evaluate(x_test, y_test) print('Test loss:', scores[0])

44 | Choosing a machine learning service in Azure

In the preceding code, we build a simple Keras CNN and fit it using the RMSProp
optimizer. Here is where all the work is done regarding the training of the ML model –
in the execution environment.

Note

It's worth noting that you can train your models on your own (such as by using
PySpark in Azure Databricks) in the authoring runtime and use the Azure Machine
Learning only to track experiments and models.

If you are working in Azure, popular choices for compute are the following:

• Authoring runtime:

• Experimentation: Azure Notebooks (example, with DSVM or shared compute)

• Training: An Azure Machine Learning compute instance

• Execution runtime:

• Training and optimization: An Azure Machine Learning training cluster

• Deployment: Azure Kubernetes Service

As you can see, picking the right compute service is not that simple because it depends
on the current task you are performing. You should always try to find the right trade-off
between flexibility and costs. This overview should help you to pick the correct service
for either running your authoring or execution environment for training custom ML
model using Azure Machine Learning as your infrastructure service. In the next section,
we will take a look into how we can leverage pre-trained models as a service without
worrying about any infrastructure or compute target.

Azure Cognitive Services and Custom Vision
If you are dealing with a well-defined general ML problem, such as classification,
object or face detection in computer vision, Optical Character Recognition (OCR)
and handwriting recognition, speech-to-text and text-to-speech, translation, spell-
checking, key word and entity extraction, or sentiment analysis, the chances are high
that these services have already been implemented and battle-tested in Azure. In a
lot of cases, it greatly saves you time, resources, and effort by reusing these services
instead of training similar models from scratch.

Azure Cognitive Services and Custom Vision | 45

If your problem space is very general—such as detecting and matching faces from a
camera image to an ID image—or detecting adult content in user-uploaded media, then
you can look into Cognitive Services. The Cognitive Services website features demos for
almost all the APIs and you can go and try them out for your use case.

If your domain is very specific but uses one of the previously discussed algorithms, it is
very likely that you can use a custom Cognitive Service, that is, a pre-trained Cognitive
Service model fine-tuned for your customized domain. This works very well in general
for image classification and object detection, for example, for detecting manufacturing
errors and automated quality control. Using such a customized model is a good trade-
off between costs, resources, and effort. Due to fine-tuning, these models usually result
in a fairly good performance with a low number of training samples, which is optimal
for a small Proof of Concept (PoC).

Azure Cognitive Services

Cognitive Services is a collection of APIs for pre-trained ML models divided into six
categories: Vision, Speech, Knowledge, Search, Language, and Anomaly Detection.
They implement well-defined common problems in these categories, such as image
classification, speech-to-text, anomaly detection, and many more. Cognitive Service
models can be consumed using a REST API from any programming language.

In general, it is a best practice to not reinvent the wheel and hence to reuse
functionality that is already available. It will most likely be more efficient to use the
Face Detection API from the Azure Cognitive Services than to build a complete and
continuous end-to-end ML pipeline and train the same model from scratch. While it
is a lot easier to use the Cognitive Services API instead, your application requires an
internet connection to reach the API.

46 | Choosing a machine learning service in Azure

The following is a simple example for calling the Cognitive Services API for computer
vision. We will use the Analyze Image API to extract categories, tags, and description
from the image:

import requests

def cs_vision_analyze(img_url, key, features=['Tags'], ...):

 endpoint = 'https://%s.api.cognitive.microsoft.com' % region

 baseurl = '%s/vision/v1.0/analyze' % endpoint

 headers = {'Content-Type': 'application/json',

 'Ocp-Apim-Subscription-Key': key}

params = {'visualFeatures': ','.join(features), 'language': lang}

payload = {'url': img_url}

r = requests.post(baseurl, json=payload, params=params, headers=headers)

return r.json()

url = 'https://..Tour_Eiffel_Wikimedia_Commons.jpg'

key = '<insert subscription key>'

features = ['Categories', 'Tags', 'Description']

res = cs_vision_analyze(url, key, features=features)

print(res)

As you can see in the preceding code example, using Cognitive Services boils down to
sending an HTTP request. In Python, this is straightforward using the fantastic requests
library. The response body contains standard JSON and encodes the results of the
Cognitive Service API. The resulting JSON output from the API will have the following
structure:

{

 "categories": [...],

 "tags": [...],

 "description"" {...},

 "requestId": "...",

 "metadata":

 {

Azure Cognitive Services and Custom Vision | 47

 "width": 288,

 "height": 480,

 "format": "Jpeg"

 }

}

The categories key contains object categories and derived classifications, such as a
landmark detection result including a confidence score:

"categories":

[

 {

 "name": "building_",

 "score": 0.9453125,

 "detail":

 {

 "landmarks":

 [

 {

 "name": "Eiffel Tower",

 "confidence": 0.99992179870605469

 }

]

 }

 }

]

48 | Choosing a machine learning service in Azure

The tags key shows you multiple tags for the image with a confidence score that is
relevant for the whole image:

"tags": [

 {

 "name": "outdoor",

 "confidence": 0.99838995933532715

 },

 {

 "name": "tower",

 "confidence": 0.63238395233132431

 }, ...

]

Finally, the description tag gives you more tags and an auto-generated image caption—
isn't that amazing?

"description":

 {

 "tags":

 [

 "outdoor", "building", "tower", ...

],

 "captions":

 [

 {

 "text": "a large clock tower in the background with Eiffel Tower
in the background",

 "confidence": 0.74846089195278742

 }

]

 }

Azure Cognitive Services and Custom Vision | 49

The result of the Cognitive Services computer vision API is just one example of
how this service can be used. We requested the image features of categories, tags,
and description from the API, which are returned as keys of the JSON object. Each
of the category and tag predictions returns the top results in combination with a
confidence value. Some categories might trigger other detection models, such as faces,
handwritten text recognition, and OCR. From the preceding example, you can see that
it would be straightforward to automatically add image captions to your product images
in a retail application using the following code:

for url in product_image_urls:

 res = cs_vision_analyze(url, key, features=['Description'])

 caption = res['description']['captions'][0]['text']

 print (caption)

You can see that this is the fastest way to implement/use a scalable deep learning-
based image analysis service, such as creating a caption for an image. It takes you
literally no more than five minutes to integrate this functionality into your own
application. However, you also see that you can only use the functionalities (for
example, labels in classification) that are provided by Microsoft. A good example is
object detection or instance segmentation in medical images. There doesn't exist any
out-of-the-box model for these use cases in the computer vision API of Cognitive
Services. In this case, you can still benefit from Cognitive Services by customizing the
model for your specific domain – this is exactly what Custom Vision does for common
computer vision tasks.

Custom Vision—customizing the Cognitive Services API

Many developers find Cognitive Services pretty useful but limited in terms of the
application domain. Here are two common examples showing this limitation:

• For a plastics manufacturer, the class labels offered by the object detection API
doesn't cover all of their product categories.

• For a service dealing with transcribing medical records, many of the medical terms
are not recognized or are transcribed incorrectly.

50 | Choosing a machine learning service in Azure

You can customize an increasing amount of ML services in Azure. The following
customizable Cognitive Services are available at the time of writing this book:

• Custom Vision (classification and object detection)

• Customizable speech recognition and transcription

• Customizable voices for text-to-speech

• Customizable translation

• Custom intent and entity recognition in text

In these situations, you can still benefit from the ease of use, technology and service
infrastructure behind Cognitive Services. Custom Cognitive Services let you train your
models on top of existing Cognitive Service models by using transfer learning. For
computer vision services, you are offered a nice UI to classify your images and tag your
objects, and subsequently train the model using a state-of-the-art model and error
metrics. Figure 2.2 shows what the training looks like in the Custom Vision service for
object detection:

Figure 2.2: A custom Vision service for object detection

Azure Cognitive Services and Custom Vision | 51

You can see in Figure 2.2 that training is as easy as clicking the Train button in the top
right. You don't have to write any code or select an error metric to be optimized, it's all
managed for you. In the screenshot you see the result of training, with three metrics
that are automatically computed on a validation set. By moving the classification
probability threshold on the top left, you can even shift the weight toward higher
precision or higher recall depending on whether you want to avoid false positives or
maximize true positives.

Once the model is trained and published, it can be consumed using a REST API like we
did with Cognitive Services. The following code block is a sample snippet for Python
using the requests library:

import requests

def cs_custom_vision(img_url, key, project_id, iteration_name, ...):

 endpoint = 'https://%s.api.cognitive.microsoft.com' % region

 url = '%s/customvision/v3.0/Prediction/%s/detect/iterations/%s/url'

% (endpoint, project_id, iteration_name)

headers = {'Content-Type': 'application/json', 'Prediction-Key': key}

payload = {'url': img_url}

r = requests.post(url, json=payload, headers=headers)

return r.json()

In the preceding code, we implement a function that looks very similar to the one we
used with Cognitive Services. In fact, only the endpoints and requests parameter have
changed. We can now call the function as before:

url = 'https://..Wood_Plate.jpg'

key = '<insert custom vision key>'

project_id = '00ae2d88-a767-4ff6-ba5f-33cdf4817c44'

iteration_name = 'Iteration2'

res = cs_custom_vision(url, key, project_id, iteration_name)

print(res)

52 | Choosing a machine learning service in Azure

The response is also a JSON object and now looks like the following:

{

 "Id":"7796df8e-acbc-45fc-90b4-1b0c81b73639",

 "Project":"00ae2d88-a767-4ff6-ba5f-33cdf4817c44",

 "Iteration":"59ec199d-f3fb-443a-b708-4bca79e1b7f7",

 "Created":"2019-03-20T16:47:31.322Z",

 "Predictions":

 [

 {

 "TagId":"d9cb3fa5-1ff3-4e98-8d47-2ef42d7fb373",

 "TagName":"defect",

 "Probability":1.0

 },

 {

 "TagId":"9a8d63fb-b6ed-4462-bcff-77ff72084d99",

 "TagName":"defect",

 "Probability":0.1087869

 }

]

}

The preceding response now contains a Predictions key with all the predictions and
confidence values from Custom Vision. As you can see, the example looks very similar
to the Cognitive Services example. However, we need to pass arguments to specify
the project and published iteration of the trained model. Using this built-in serving
API we save ourselves a lot of effort in implementing and operating a deployment
infrastructure. However, if we want to use the trained model somewhere else (for
example, in an iPhone or Android application, or in a Kubernetes cluster), we can export
the model in many different formats (including Tensorflow, CoreML, ONNX, and so on).

Azure Machine Learning with GUIs | 53

Custom Cognitive Services are a fantastic way to efficiently test or showcase an ML
model for a custom application domain when dealing with a well-defined ML problem.
You can use either the GUI or API to interact with these services and consume the
models through a managed API or export them to any device platform. Another benefit
is that you don't need deep ML expertise to apply the transfer learning algorithm, and
can simply use the predefined models and error metrics.

If you require full customization of the algorithms, models, and error metrics, you need
to implement the model and ML pipeline on your own. In the following sections, we will
discuss how this can be done using either GUI or code-first tools.

Azure Machine Learning with GUIs
Azure provides a few great tools with GUIs that can be used to directly train and deploy
a data pipeline and ML model or reuse this functionality from a different service.

We will look into three different services: Azure Machine Learning designer, Azure
Automated Machine Learning, and Power BI. From these three services, only Azure
Machine Learning designer is a traditional GUI-based service with which you can
customize data pipelines, transformations, feature extraction, and ML model validations
in an interactive block-based environment.

The other two services are both based on the power of the Automated Machine
Learning engine, which we can access either through the Automated Machine Learning
GUI, through an SDK, or through Power Query transformations in Power BI. Automated
Machine Learning provides fantastic capabilities to create powerful ML models using
zero code. Let's take a look at the individual services, how they are used, and how they
compare to each other.

Azure Machine Learning designer

Azure Machine Learning designer is replacing the deprecated yet widely adopted
Azure ML Studio (classic) service to build, train, optimize, and deploy ML models using
a GUI. It provides a robust and large amount of features, algorithms, and extensions
through R and Python support. It's a fantastic no-code environment in which to build
complex ML models for clustering, regression, classification, anomaly detection, and
recommendation models as well as data, statistical, and text analysis.

54 | Choosing a machine learning service in Azure

The main interface in Azure Machine Learning designer lets you build ML models by
connecting functional blocks to the graph of operations. Figure 2.3 shows an overview
of the interface. It's easy to get started, pull in functional blocks from the left to read
in data, preprocess data, perform feature selection, or use an ML algorithm for model
training:

Figure 2.3: An overview of the main interface in Azure Machine Learning designer

In Figure 2.3, we can see the default view when opening a project. Once we put all
blocks in place and connect them using the block connections, we can press SUBMIT to
evaluate the graph of operations. This will spin compute resources for you and train the
model for you – you only have to specify your compute instances.

Azure Machine Learning designer lets you easily import data from many different
sources, and many from within Azure. Loading a CSV file from Blob Storage is just a
click away. It also provides many powerful conversions for data formats and data types,
normalization, and cleaning blocks.

As more and more functional block modules get added to your workspace, you can
create complex data preprocessing, model training, and validation pipelines. Figure 2.4
shows a typical pipeline for a regression model using a Linear Regression block. First we
read the data, clean it, and split it into training and testing sets. We use the training set
to train the regression model and the testing data score and evaluate it.

Azure Machine Learning with GUIs | 55

Figure 2.4: A pipeline for Automobile Price Prediction

As you can see in Figure 2.4, while it is nice to structure your data flow in functional
blocks, the whole workspace can get quite convoluted and hard to reason with. You can
also extend the functionality of Azure Machine Learning designer by using custom code
blocks for Python or R. We actually used two Rscript blocks in the preceding data flow.
This is very convenient as we can now build reusable blocks of abstracted functionality.

56 | Choosing a machine learning service in Azure

In each Python code block, we define a function that takes up to two Pandas
DataFrames as inputs and can output the transformed dataset. This is the skeleton of
the Python code block function where we need to define the transformation code:

imports up here can be used to

import pandas as pd

The entry point function can contain up to two input arguments:

Param<dataframe1>: a pandas.DataFrame

Param<dataframe2>: a pandas.DataFrame

def azureml_main(df_1 = None, df_2 = None):

 # Return value must be of a sequence of pandas.DataFrame

 return df_1,

One of the reasons why Azure Machine Learning designer is very popular lies in its
deployment capabilities. If you have created a data pipeline and trained a model, you
can save the trained model within your Azure Machine Learning workspace. Now,
within a few clicks you can create a web service using this model to either retrain the
model with new data or deploy a scoring service. The user input is defined through
the very same data import block that we used previously for the training data. We then
connect the user input with the trained model, score the model, and return the output
to the web service. With another click you can deploy the pipeline to production using
a web service plan. It's literally 5 minutes of work and a couple of clicks to deploy a
trained model, which is absolutely convenient.

Azure Machine Learning designer is a great tool if you want to get started quickly
building complex workflows and preconfigured ML models in a GUI environment and
deploy them as services to production. Despite being used by many companies, I don't
think it is the best tool to implement ML models in Azure for complex end-to-end
workflows. The models and blocks are too difficult to use properly for people with no
coding or ML experience, and not flexible enough for those people with experience.
Therefore, it sits in a difficult spot and is often misused by users who don't know
exactly what they are doing.

However, not knowing about ML shouldn't stop users from training ML models using
the right tools. I just think there are better tools that fit this audience – and one of
those is definitely Automated Machine Learning, which provides a better level of
abstraction to non-experienced users. Let's take a look!

Azure Machine Learning with GUIs | 57

Azure Automated Machine Learning

Users that have no experience with training ML models should not have to choose,
parameterize, or configure algorithms for training. At the same time, everyone should
be given the possibility to create a prediction model for a conforming dataset. In the
democratization of AI we aim to give every user that can use a spreadsheet application
the possibility to train ML models on a specified region of data in the spreadsheet. But
how should this be done if a user has no or limited knowledge about ML?

Azure Automated Machine Learning to the rescue! Azure Automated Machine Learning
is a no-code tool that lets you specify a dataset, a target column, and ML tasks to
train an ML model for you. That's what we think is a great abstraction for a user who
just wants to fit training data to a target variable. Figure 2.5 shows the last step in the
Automated Machine Learning interface, where the user needs to choose the ML task to
be solved for the specified data:

Figure 2.5: Creating an Automated Machine Learning run

As we see in Figure 2.5, Automated Machine Learning currently supports classification,
regression, and time series forecasting tasks. Together with the informative
explanations for each task, this is something we can put into the hands of ordinary
Excel users or help ML engineers to quickly build and deploy a great baseline model. We
will see this in much more detail in Chapter 10, Distributed machine learning on Azure.

58 | Choosing a machine learning service in Azure

However, to get you excited already, you can see in Figure 2.6, some additional output
that you get in Automated Machine Learning for each tested and optimized model.
Automated Machine Learning gives you access to all training runs, all trained models
and their performances, and useful metrics and insights, such as the ROC curve, the
gain curve, and a confusion matrix (the latter in the case of a classification task):

Figure 2.6: Additional output for each tested and optimized model using Automated Machine Learning

Note

Automated Machine Learning is also provided through the Azure Machine Learning
SDK in Python. There you have the same functionality available directly from your
authoring environment.

Automated Machine Learning is a fantastic milestone in providing a true ML-as-a-
Service platform with a great abstraction for non-experienced and highly skilled users.
This service will power the AI capabilities in tomorrow's products. What if automated
training of ML models would be available as a single button in Excel, such as a single
button to transform a given data range using Automated Machine Learning? While this
sounds really cool, it is already reality in the Power Query transformation view of Power
BI – the same thing that also powers Excel's data transformation capabilities. We will
see what this looks like in action in the following section.

Azure Machine Learning with GUIs | 59

Microsoft Power BI

Microsoft Power BI is a fantastic self-service Business Intelligence (BI) tool that can
connect to multiple data sources, load, transform, and join data there, and create
custom visualization and insights. It looks and feels just like another Microsoft Office
tool, similar to using Excel or PowerPoint. This makes it a self-service BI tool as it is
very easy to use, fast, and extremely flexible.

Power BI or actually the Power Query editor of Power BI Service premium—the Power
BI online service—has a very similar Automated Machine Learning interface built in
as we just saw in the previous section. In fact, they are based on the same Automated
Machine Learning engine that can be now configured through multiple services and the
Automated Machine Learning package of the Azure Machine Learning SDK. This gives
us access to all of the capabilities of Automated Machine Learning directly within Power
BI for data transformations based on classification or regression tasks.

Figure 2.7 shows an overview of the Automated Machine Learning view in Power BI after
selecting the Add a machine learning model action in the entities view. At the time
of writing, this feature is only available as a preview in the Power BI premium online
service:

Figure 2.7: Adding a machine learning model using Power BI premium online service

While I understand that you won't start training your models in Power BI using
Automated Machine Learning right now, it is important to know what is currently
possible and what the trends are for the future. And one thing is for sure: the
democratization of AI and ML for ordinary office users is advancing fast.

If you found the GUI tools interesting, but you're aiming to create your custom ML code
using your own frameworks and training code, then the best service to support you is
Azure Machine Learning.

60 | Choosing a machine learning service in Azure

Azure Machine Learning workspace
Azure Machine Learning is the newest member of the ML service family in Azure. It was
initially built as an umbrella to combine all other ML services under a single workspace,
and hence is also often referred to as the Azure Machine Learning workspace.
Currently, it provides, combines, and abstracts many important ML infrastructure
services and functionality such as tracking experiment runs and outputs, a model
registry, an environment and container registry based on Conda and Docker, a dataset
registry, pipelines, compute and storage infrastructure, and much more.

Besides all of the infrastructure services, it also integrates Azure Automated Machine
Learning, Azure Machine Learning designer (, and a data-labeling UI in a single
workspace that can share the same infrastructure resources. It is, in fact, the ML
service that you are looking for if you want to do something serious. In many cases,
it does all you can ask for and more. In this section, we will look primarily at the ML
infrastructure functionality.

While Azure Machine Learning provides a great new UI (which unfortunately is called
Machihne Learning Studio and should not be confused with ML Studio classic), we
will mostly use its functionality through the SDK instead. We will use the Python SDK in
order to run the orchestration commands in an environment that we are already using
for data visualization and exploration in a Jupyter notebook. Figure 2.8 shows the UI of
Azure Machine Learning in the Azure portal:

Figure 2.8: The UI of Azure Machine Learning in the Azure portal

Azure Machine Learning workspace | 61

In Azure Machine Learning, we can easily manage different compute resources through
the UI and SDK. Most of the time, we will use three types of compute resources
throughout the different steps in the ML process:

• A compute instance for the authoring runtime and Jupyter: This is similar to a
DSVM.

• An auto-scaling training cluster for the ML execution runtime during training:
This is an Azure Machine Learning compute cluster.

• An inferencing cluster for the execution runtime during scoring: This is a
managed Kubernetes cluster using Azure Kubernetes Service.

It's worth mentioning that each of those services can be created from Python using the
SDK in less than 10 lines of code. The same is true for storage resources. We can use
the ML SDK to manage Blob Storage containers in the ML workspace. This is very neat
as it allows us to efficiently store outputs from training runs, artifacts such as trained
models or training scripts, dataset snapshots, and much more.

Besides managing infrastructure, Azure Machine Learning can do a lot more for us.
Most importantly, it can track our experiment runs and collect output files, artifacts,
logs and custom metrics—such as training loss and more. This is by far the most
powerful gateway drug into the Azure Machine Learning world. By simply annotating
your existing ML project, you can track all your model scores – even during the training
per epoch – stream your log output, collect all your output images, and collect and
store the best model for each iteration or run. This is like magic, as with a few simple
statements you won't lose a model for a particular training run ever again and you can
keep track of training losses per run.

Datasets, environments, and models can be tracked and versioned in Azure Machine
Learning using a few lines of code. This gives you the great benefit of being able to
keep a predictable history of changes in your workspace. By doing this you can create
repeatable experiments that always read the same data snapshot for a training run, use
the same specified Conda environment, and update the trained model in the model
history and artifact store. This brings you on track toward a CI/CD approach for your
training pipeline.

Speaking of pipelines, Azure Machine Learning lets you abstract pieces of authoring
code into pipelines. A pipeline could run data preparation jobs in parallel, create and
start training clusters, and execute a training script on the cluster. You can see how
everything guides you toward a repeatable, versioned, end-to-end pipeline for your
training process. The greatest part, however, is that you don't have to go all-in to
benefit from Azure Machine Learning.

62 | Choosing a machine learning service in Azure

Instead, you can start little by little, adding more and more useful things into the
training process and then gradually move an existing or new ML project to the Azure
Machine Learning workspace. We will take a brief look at the deployment capabilities
of Azure Machine Learning in Chapter 12, Deploying and operating machine learning
models.

Let's first explore how you can track experiments in Azure Machine Learning, before
seeing how we can train models using our own frameworks and tools.

Organizing experiments and models in Azure Machine Learning

Azure Machine Learning provides you with all necessary infrastructure and service so
that you as a user can concentrate on writing implementing your ML code. The easiest
way to start using Azure Machine Learning and experience its capabilities is to start
organizing your training experiments and runs in Azure Machine Learning. Through a
few small changes, you can get real-time training insights, tracking performance per
run, exported logs, exported outputs, and tracked and versioned trained models. The
best part is that this works on any machine on any Python interpreter.

Figure 2.9 gives you a good reference for what you can expect. Simply getting all your
experiment runs tracked and collected at a single place. The view is fully configurable,
with metrics on the left, charts on the top, and the table on the bottom can be
configured to your liking. And you get all this (and a lot more) by not changing anything
to do with your current behavior by simply adding a few lines of code to your training
script:

Figure 2.9: Organizing experiments and models in Azure Machine Learning

Azure Machine Learning workspace | 63

You can see in Figure 2.9, all your ML experiment runs tracked. You see automatic
parameters such as training duration, when it started, what's the status, and how the
run performed. Besides that, you can send custom metrics, tags, and a lot more. We will
hopefully cover all possibilities throughout this book, but it's worth mentioning that you
can get from no tracking in your code to the preceding screenshot in 10 minutes.

Note

By start using Azure Machine Learning you don't have to change anything in your
current workflow, but simplify your life by using the tracking and logging features
for experiment runs, metrics, logs, and models.

In Azure Machine Learning, your ML tasks are organized as experiments. Each
experiment now can have multiple runs, and run output and metrics will be aggregated
per experiment. Hence, if you are trying to implement a credit score prediction service,
you can call your experiment credit-score-regression. Here is an example of how to
add this information to your Python project using Azure Machine Learning. Please note
that all experiments and runs that don't yet exist will automatically be created for you
by default:

from azureml.core import Workspace, Experiment

Configure workspace and experiment

ws = Workspace.from_config()

exp = Experiment(workspace=ws, name="credit-score-regression")

Next, you experiment with different features, models, and parameters and hence we
want to track all these efforts to see which one was the best. This is called a run in
Azure Machine Learning; to start a run and to track a few epochs of our training we add
the following code to the project:

run = exp.start_logging()

for i in range(1, n_epochs):

 loss = model.train_epoch(...)

 run.log('loss (train)', loss)

64 | Choosing a machine learning service in Azure

The preceding code will now send all loss values per iteration to Azure Machine
Learning and make these values available under the run. What is really amazing here is
that we can either send the same metric with multiple values (as we just saw) or with
a single value (in the next example). When sending multiple values like the training
loss per epoch, Azure Machine Learning automatically creates a visualization for you
– when sending a single value, it will show as a single value in the UI and use the value
for the runs in the overview table and in aggregations. Per the default configuration,
Azure Machine Learning will show you (for example) the max accuracy from all of your
training runs in the overview if you add accuracy as a single metric in your run. The
following snippet shows how to log a single metric:

Save model scores

scores = model.evaluate(X_test, y_test, verbose=1)

run.log('accurcay (test)', scores[1])

This section is non-exhaustive; we won't cover everything Azure Machine Learning can
track. However, it's essential to mention that you can track any additional outputs of
your pipeline similar to how we collect metrics. The following snippet shows you how to
track a trained model that has previously been saved to disk:

Upload the best model

run.upload_file(model_name, model_path)

The file you want to save doesn't need to be a trained model, it can be anything that you
want to save additionally with your run. Please note that the run can be configured to
automatically upload your current training script, collect everything from an outputs
folder, and stream everything from a logs folder to Azure Machine Learning. However,
if the artifact is a model, you can also register this model in the model registry. Again,
this is one simple command to track your trained model, which will be automatically
connected with the run:

Register the best model

run.register_model(model_name, model_path=model_name,

 model_framework='TfKeras')

We don't necessarily need to specify additional information, such as the framework
used for training the model. However, if we do so we will get many additional benefits
including, model explanations, no-code deployments, and much more. We will see more
of this in Chapter 7, Building ML models using Azure Machine Learning, and Chapter 12,
Deploying and operating machine learning models, respectively.

Azure Machine Learning workspace | 65

In Figure 2.10, you see what you get when uploading and registering a model with your
run: a central place where your models are linked with your experiment runs and their
metrics. You won't ever lose a trained model again, nor run out of disk space to save
trained models, nor have to remember which parameters were used to train this model
or what the test performance was like during that run, among many other things:

Figure 2.10: Details of the uploaded and registered model in Azure Machine Learning

In the summary of a run, we can also find a button to directly deploy a model. With a
few more clicks or just three lines of code in Python, we can get from a training run
to a trained model, and on to a model deployed as a container service in the cloud. It
allows you to turn a model into a scoring service in seconds. This is simply impressive
and there are so many great benefits from this—imagine serving all your trained models
effortlessly in a staging environment, being able to run end-to-end testing on your
models, and using fully automated CI/CD pipelines.

66 | Choosing a machine learning service in Azure

Deployments through Azure Machine Learning

We hope you've got a good impression of what is possible with Azure Machine Learning,
and we have covered only a tiny part of its functionality. However, the same is true for
all other features – Azure Machine Learning solves your infrastructure problems and
lets you focus on developing great data pipelines, feature extractors, and predictive
models. This becomes extremely obvious when looking at the deployment features of
Azure Machine Learning.

In Azure Machine Learning, we broadly differentiate between two types of
deployments:

• The first type is deploying trained models as a web service for online scoring. We
can automatically deploy models to Azure Kubernetes Services to benefit from
containerization, auto-scaling, and blue-green deployments. There are many
additional enterprise features, including authentication, multiple endpoints for
A/B testing, telemetry collection, and much more.

• The second deployment type is for batch scoring large amounts of data through
a service. In Azure Machine Learning, this works through the usage of pipelines.
Your scoring script is parameterized and wrapped into an Azure Machine Learning
Pipeline, which itself can be deployed as a web service. Calling this web service
can now parameterize and trigger any task that you implement in the batch
scoring script, such as reading files from Blob storage, scoring them, and writing
the results back into a CSV file. Besides that, you can use the same deployment
type to trigger the re-training of your models.

Besides standard deployment, you can always pull in the trained models from the model
registry into any Python interpreter. This means you can download your model in any
Python environment, be it PySpark on Azure Databricks or the Python runtime within
Azure Data Explorer. This opens the door for many advanced custom deployment
methods, where only the sky is the limit.

If you use standard ML models trained via sklearn and other supported frameworks,
you can use no-code deployments to deploy the model directly from the model registry.
This will automatically configure your environment, pull in the right Docker base image
and Python packages, use a default scoring script, and deploy the model as a web
service to an Azure Container Instance. This is a fantastic feature for integration and
end-to-end testing, as well as for staging and QA environments. Again, this might be
something you could implement yourself given enough time, but it is really convenient
to use straight out of the box.

Summary | 67

Another great point to mention is that Azure allows you to deploy multiple models to
the same endpoint on Azure Kubernetes Service. For each endpoint, you can configure
the amount of traffic in percentage that should be automatically routed there. On top
of this – as for all deployed services – we get automated telemetry data and monitoring
out of the box. The amazing part is that all this works with a couple of lines of Python
code through your authoring environment. We will see this in great depth in Chapter 12,
Deploying and operating machine learning models.

Azure Machine Learning can do a lot more besides tracking experiment metrics and
models, and deploying these models to Kubernetes. However, this should simply
give you an understanding of what can be done with minimal effort, 30 minutes of
your precious time, and an existing training pipeline. You also saw that there was no
restriction in any way toward which frameworks, models, or functionalities you used; it
will work in a straightforward way if you use Python (or R).

Summary
In this chapter, we learned the differences between multiple ML and AI services in
Azure. You can now easily navigate through various Azure services and know which
ML task requires which service. If your task and data is available for Cognitive Services,
then it is very convenient to simply use the Cognitive Services API for prediction. This
is the case for common computer vision tasks, such as object detection of common
objects, image captioning and tagging, face detection, handwritten text recognition,
landmark detection, and many other text and language tasks.

If you need to build custom models for data from custom domains, you can choose
to pick a tool with a GUI such as Azure Machine Learning designer. However, if you
don't know how to select and configure a good custom ML model, Automated Machine
Learning would be a better choice for you.

Finally, if you want to create your own custom model, your best choice is the Azure
Machine Learning. It is a great tool that enables you to build fully automated end-to-
end ML pipelines and deployments using your own frameworks and environments. You
learned that orchestrating all infrastructure automation is done through the authoring
environment, which will automatically schedule your training runs on the execution
runtime – this could, for example, be an auto-scaling GPU cluster.

Azure Machine Learning is also the service that we use throughout this book to help
you implement such a pipeline. In the next chapter, we will take a look at how to set up
and prepare your Azure Machine Learning workspace and master data exploration in
Azure using embeddings and data visualizations.

In the second part of the book, the reader will learn how to load a dataset into Azure,
visualize the data using two-dimensional embeddings, experiment with the data and
models in a notebook environment, and preprocess the data for subsequent training.

This section comprises the following chapters:

• Chapter 3, Data experimentation and visualization using Azure

• Chapter 4, ETL, data preparation, and feature extraction

• Chapter 5, Azure Machine Learning pipelines

• Chapter 6, Advanced feature extraction with NLP

Section 2:
Experimentation and

Data Preparation

In the previous chapter, we learned how to navigate different Azure services for
implementing ML solutions in the cloud. We realized that the best service for training
custom ML models programmatically and automating infrastructure and deployments
is Azure Machine Learning. In this chapter, we will set up the Azure Machine Learning
workspace, create a training cluster, and perform data experimentation while collecting
all artifacts in Azure.

First, you will learn how to prepare and interact with your ML workspace. Once set up,
you will be able to perform and track experiments in Azure, as well as trained models,
plots, metrics, and snapshots of your code. This can all be done from your authoring
Python environment; for example, Jupyter using Azure Machine Learning compute
instances—similar to Data Science VMs (DSVMs) or any Python interpreter running
in PyCharm, VS Code, and so on. We will first run experimentation code locally in the
authoring environment and gradually move to an auto-scaling training cluster.

Data experimentation
and visualization

using Azure

3

72 | Data experimentation and visualization using Azure

In the second part of this chapter, we will apply the knowledge learned and perform
dimensionality reduction to visualize high-dimensional datasets. We will also track
these visualizations together with the key metrics in Azure Machine Learning. First, we
will compare two linear projections: Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA) as an example of unsupervised and supervised embedding.
Then we will look at two popular unsupervised non-linear techniques: t-Distributed
Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold Approximation and
Projection (UMAP). This will help you to experiment with any dataset quickly and save
your experiments in Azure Machine Learning.

Let's dive right in to set up your Azure Machine Learning workspace. We recommend
you follow along with us in your Azure account, using Azure Cloud Shell, Azure Machine
Learning, and an Azure Machine Learning compute instance. Don't worry if some of this
still sounds unfamiliar; we will tackle the setup and experimentation one step at a time.

The following are the topics that will be covered in this chapter:

• Preparing your Azure Machine Learning workspace

• Visualizing high-dimensional data

Preparing your Azure Machine Learning workspace
In the first section, we will set up the ML workspace in Azure using the Azure command
line. This will help you to create development, staging, and production environments
repeatedly. You can do parts from your local machine, for example, running Azure
command-line scripts or a simple Python authoring environment, or do it in the cloud
using Azure Cloud Shell. Using the preconfigured shell in Azure is the quickest method,
as all required extensions and aliases are already preinstalled and configured for you.

We will then run simple experiments from your authoring and experimentation
environment (for example, your local development machine or a small mcompute
instance in Azure Machine Learning) and then smoothly transition to an Azure Machine
Learning training cluster—a highly scalable execution environment on Azure. The great
thing about this setup is that from then on you will be able to decide whether you want
to run code on your local development machine (and still benefit from many of the
features of Azure Machine Learning) or you want to run it on a pre-configured VM or
auto-scalable training cluster.

Preparing your Azure Machine Learning workspace | 73

A great approach to discover Azure Machine Learning is to take a current ML project
and start adding bits and pieces from Azure Machine Learning to enhance the project.
We will start tracking the working directory, the output artifacts (for example, a trained
model), as well as all relevant metrics for each run of your experiment. Later, we can
register models and switch between execution environments, or tune the parameters.
This should give you a very smooth transition from your current workflow and a great
onboarding experience for Azure Machine Learning—using only a few lines of code at a
time.

Setting up the ML Service workspace

Throughout this book, we will try to automate as many manual steps as possible, to give
you a way to reproduce all environments and experiments. There are many different
methods to set up resources in Azure programmatically: ARM templates, the Azure CLI,
Azure SDKs, Terraform, and many more tools are available. In general, we will use the
Azure CLI to setup and configure the Azure Machine Learning workspace, and later
exclusively use the Azure Machine Learning SDK for Python to set up and configure
training clusters and other resources.

Note

Using this approach will greatly facilitate the reproducibility and automation of all
the tasks performed in Azure. If you are new to the Azure CLI, you should go ahead
and install it now through the information provided in the Azure documentation:
https://docs.microsoft.com/cli/azure/install-azure-cli-windows. If you already have
the Azure CLI installed, please make sure you have the latest available version,
which is required for many of the new ML features.

https://docs.microsoft.com/cli/azure/install-azure-cli-windows

74 | Data experimentation and visualization using Azure

Let's set up the Azure Machine Learning workspace following these steps:

1. First, we need to install the Azure Machine Learning extension for the Azure CLI.
This will allow you to interact with Azure Machine Learning through the command
line. Let's install the ML extension using the following command:

$ az extension add -n azure-cli-ml

2. Once installed, you will be able to use the extension using the az ml command.
Make sure that, before you continue, you run the following command to explore
the actions provided by the Azure CLI ML extension:

$ az ml -h
Group
 az ml : Access Machine Learning commands.

Subgroups:
 computetarget : Access compute context related commands.
 datastore : Manage and use datastores.
 experiment : Manage experiments in the AzureML Workspace.
 folder : Access folder related commands.
 model : Manage machine learning models.
 pipeline : Access and manage machine learning pipelines.
 run : Manage and submit AzureML runs.
 service : Manage operationalized services.
 workspace : Access workspace related commands.

3. Next, create a new resource group, mldemo, in the westus2 region and an Azure
Machine Learning workspace, mldemows. This will create not only the workspace
but also all other required resources for our ML project, such as StorageAccount,
ServicePrincipal, AppInsights, and the KeyVault container. These services are all
part of your Azure Machine Learning workspace:

$ az group create -n mldemo -l westus2
{ ... }
$ az ml workspace create -w mldemows -g mldemo
Deploying StorageAccount with name mldemowsstorage01509a813. Deploying
AppInsights with name mldemowsinsightsd847e989.
Deployed AppInsights with name mldemowsinsightsd847e989. Deploying
KeyVault with name mldemowskeyvaultba9841b6.
Deployed KeyVault with name mldemowskeyvaultba9841b6. Deployed
StorageAccount with name mldemowsstorage01509a813. Deploying Workspace
with name mldemows.
Deployed Workspace with name mldemows.
{ ... }

Preparing your Azure Machine Learning workspace | 75

As you can see, the preceding command created multiple resources, together
with the Azure Machine Learning workspace, that are required for running ML
experiments. KeyVault will be used to automatically manage your secrets and
keys under the hood; StorageAccount will be used to store artifacts such as source
files, trained models, and data; AppInsights will be used to track your experiment
metrics and telemetry data of deployments.

4. In the next step, we change to a working directory in your shell and export the
Azure Machine Learning workspace configuration to disk. This will help us to load
the configuration from this file rather than keeping track of your subscription ID
and ML workspace name in your scripts:

$ az ml folder attach -w mldemows -g mldemo -e mldemos
{
 "Experiment name": "mldemos",
 "Project path": "~/ch03-data-experimentation",
 "Resource group": "mldemo",
 "Subscription id": "***",
 "Workspace name": "mldemows"
}

The preceding command creates an .azureml/ folder in the current working
directory that contains your workspace configuration. It also creates an .amlignore
file, which defines all file patterns for files and folders that should be ignored by
Azure Machine Learning. These files won't be uploaded during a snapshot in an
experiment run – similar to a .gitignore file in your version control system.

5. In the subsequent step, we can install the Python extensions to interact with
Azure Machine Learning from within Python. The extension is really powerful, and
let's you not only interact with Azure Machine Learning but also create training
clusters, deployment clusters, and much more.

Note

Please note that this only has to be done if you run your experiments on your own
machine—and not in the pre-configured Azure Machine Learning compute or Data
Science Virtual Machine (DSVM) in Azure.

76 | Data experimentation and visualization using Azure

If you are running locally, you need to install the Python SDK for Azure and Azure
Machine Learning. Here is a snippet of how to achieve this using pip and Python 3:

python3 -m pip install azure-cli azureml-sdk

If you want to run your authoring environment in the cloud, you can simply
navigate to your Machine Learning workspace in Azure and open the Azure
Machine Learning interface to use the Notebook viewer provided there. Figure 3.1
shows the Azure Machine Learning interface. You can see the Notebooks tab in
the left menu. Selecting this tab gives you a fully-fledged Notebook environment
directly in your workspace:

Figure 3.1: The notebooks viewer in Azure Machine Learning

To run code in this environment, click on Compute and create a compute instance
for your notebook. Once finished, you will also see an option to start a separate
Jupyter notebook or JupyterLab session if you prefer those environments.

However, you can also continue by running the following code locally with the
Azure and Azure Machine Learning Python SDKs installed. Figure 3.2 shows how
this looks in the Azure Machine Learning interface. You can click on JupyterLab to
open a JupyterLab session on this compute instance:

Preparing your Azure Machine Learning workspace | 77

Figure 3.2: A compute instance preview showing the status of the running code in
Azure Machine Learning

Figure 3.2 shows you how to quickly set up a full-fledged authoring and
experimentation environment in the Azure Machine Learning workspace by simply
deploying a compute instance. If you prefer a more integrated experience, you
can also switch back to the Notebooks tab in the left menu and execute notebooks
using this compute.

Note

Compute instances were previously called Notebook VMs and are similar to pre-
configured DSVMs.

6. Next, we can load the workspace configuration from this file without explicitly
specifying the workspace and subscription in every experiment. In an interactive
Python notebook environment or any Python interpreter you have handy, you can
run the following code to load your workspace in the current context:

from azureml.core import Workspace

ws = Workspace.from_config()

78 | Data experimentation and visualization using Azure

The preceding code will load your configuration from the configuration directory
we created earlier using the Azure CLI. Whenever you run code in an Azure Machine
Learning compute instance, you get these settings pre-configured with your
workspace.

Note

Loading the workspace in Python will prompt you to log in into your Azure account
to allow the communication between your current compute environment and your
Azure Machine Learning workspace.

Running the previous code block will output an interactive link to sign into your Azure
account using a device code. Please follow the link and use the provided code for the
sign in to grant your current execution environment access to your Azure Machine
Learning workspace. If you run a non-interactive Python script rather than a notebook
environment, you can provide the Azure CLI credentials to sign into your Azure account
as follows:

from azureml.core import Workspace

from azureml.core.authentication import AzureCliAuthentication cli_auth =
AzureCliAuthentication()

ws = Workspace.from_config(auth=cli_auth)

Once you have successfully loaded the workspace into the ws object, you can continue
adding tracking capabilities to your ML experiments. We will use this object to create
experiments, runs, log metrics, and register models.

Running a simple experiment with Azure Machine Learning

One great use case for starting with Azure Machine Learning is to add advanced
logging, tracking, and monitoring capabilities to your existing ML pipeline. Imagine you
have a central place to track your ML experiments from all your data scientists, monitor
your training and validation metrics, collect your trained models and other output files,
as well saving a snapshot of the current environment. We can achieve this by simply
adding a few lines of code to your training scripts.

In the Azure Machine Learning workspace, an experiment groups a set of runs. A run
is a single execution of your experiment (your training script) with different settings,
models, code, data, and so on but with the same comparable metric. You use runs to
test multiple hypotheses for a given experiment and track all results within the same
experiments. A run is then used for tracking and collecting information. We will now
create an experiment and, subsequently, a run:

Preparing your Azure Machine Learning workspace | 79

1. First, load and create an experiment. The following line of code will create a new
experiment or load an existing experiment in the ML workspace with the provided
name:

Load or create an experiment
exp = Experiment(workspace=ws, name="cifar10_cnn_local")

The preceding code creates an experiment with the name cifar10_cnn_local once
a new run is tracked, and nothing more. If an experiment with the same name
already exists, the invocation returns the existing experiments. All runs in this
experiment are now grouped together and can be displayed and analyzed on a
single dashboard.

2. Once we have loaded an experiment, we can create a run object and start the
logging of this run for the current Python script or notebook:

Create and start an interactive run
run = exp.start_logging(snapshot_directory='examples')

The preceding code actually not only creates and initializes a new run; it also takes
a snapshot of the current environment—defined through the snapshot directory—
and uploads it to the Azure Machine Learning workspace. To disable this feature,
you need to explicitly pass snapshot_directory=None to the start_logging()
function. You might be wondering why we are specifying a separate directory
instead of referring to the current directory. The reason for this that we only want
to track the examples directory here as it contains all our code samples. However,
feel free to set this to the current directory.

In addition, also using the .amlignore file, we can specify which part of the current
working directory should not be tracked in the workspace. By using only two lines
of code, you can track a snapshot for each execution of your experimentation runs
automatically—and hence never lose code or configurations and always come back
to the specific code, parameters, or models used for one of your ML runs. This is
not very impressive yet, but we are just getting started.

Figure 3.3 shows the tracked files for a specific experiment run in Azure Machine
Learning:

80 | Data experimentation and visualization using Azure

Figure 3.3: Tracking code execution using tracked files

3. If you run your code in a script rather than in a notebook, it is good practice to
wrap your training code in a try - except block in order to propagate the status of
your run to Azure. If the training run fails, then the run will be reported as a failed
run in Azure. You can achieve this by using the following code snippet:

run = exp.start_logging()
try:
 # train your model here
 run.complete()
except:
 run.cancel()
 raise

Preparing your Azure Machine Learning workspace | 81

We included the raise statement in order to fail the script when an error occurs.
This would normally not happen as all exceptions are caught. You can simplify
the preceding code by using with statement. This will yield the same result and is
much easier to read:

with exp.start_logging() as run:
 # train your model here
 pass

4. Besides the snapshot directory, which is uploaded before the run starts, the
outputs and logs directories are special in a run. Once a run is completed using
run.complete(), all content of the outputs directory is automatically uploaded
into the Azure Machine Learning workspace. In a simple example using Keras, we
could checkpoint the best model per epoch to the outputs directory and hence
automatically version and track the trained model for each experiment:

import os
from keras.calbacks import ModelCheckpoint

outputs_dir = os.path.join(os.getcwd(), 'outputs')
model_name = 'keras_cifar10_trained_model.h5'
model_path = os.path.join(outputs_dir, model_name)

define a checkpoint callback
checkpoint_cb = ModelCheckpoint(model_path,
 monitor='val_loss',
 save_best_only=True)

train the model
model.fit(x_train, y_train,
 batch_size=batch_size,
 epochs=epochs,
 validation_data=(x_test, y_test),
 callbacks=[checkpoint_cb])

In the preceding code, we train a Keras model and write the best model to the defined
output folder each iteration. Hence, whenever we run the training with the previous
experiment tracking, the model gets uploaded automatically once the run is completed.

82 | Data experimentation and visualization using Azure

We can see (in Figure 3.4) that the best model was uploaded to the Azure Machine
Learning workspace. This is also very convenient as you won't lose track of your trained
models anymore. On top of that, all artifacts are stored in Blob storage, which is highly
scalable and inexpensive:

Figure 3.4: The Outputs + logs tab in the Azure Machine Learning workspace

The Logs directory will be streamed if the training script is invoked through
ScriptRunConfig rather than executing directly—we will see this in action in the next
section. This means your logs will appear and get updated when they occur and not
only at the end of each run.

Another great utility to add is registering the trained model in the model artifact store
of Azure Machine Learning. To do so, you only need to invoke the run.register_model()
method, as in the following code snippet:

Upload the best model

run.upload_file(model_name, model_path)

Register the best model

run.register_model(model_name, model_path=model_name,

 model_framework='TfKeras')

In the preceding code, we first force the upload of the model. This is needed because all
output resources are only uploaded when the run is completed, and not immediately.
Hence, after uploading the model, we can simply register it in the model store. The
model is versioned and made available in the model store, as seen in Figure 3.5:

Preparing your Azure Machine Learning workspace | 83

Figure 3.5: Details of the registered model in Azure Machine Learning

The model can then be used for automatic deployments from Azure Machine Learning.
We will look at this in a lot more detail in Chapter 12, Deploying and operating machine
learning models.

84 | Data experimentation and visualization using Azure

Using the previous code, we would always update the model with a new version as soon
as a new model is available. However, this doesn't automatically mean that the new
model has a better training or validation performance. Therefore, a common approach
is to register the new model only if the specified metric is better than the highest
previously stored metric for the experiment. Let's implement this. We can return a
generator of metrics from a defined experiment using the following function:

from azureml.core import Run

def get_metrics_from_exp(experiment, metric, status='Completed'):

 for run in Run.list(exp, status=status):

 yield run.get_metrics().get(metric)

The preceding generator function yields the specified tracked metric for each run that
is completed. Now, we can use this function to return the best metric from all previous
experiment runs. We use the best metric to compare the evaluated score from the
current model and decide whether we should register a new version of the model. We
should do this only if the current model performs better than the previous recorded
model. The code for this functionality looks like this; we expect the model to track a
metric called Test accuracy. We will learn how to log this metric in the next section:

Get the highest test accuracy

best_test_acc = max(get_metrics_from_exp(exp, 'Test accuracy'))

Evaluate the current model

scores = model.evaluate(x_test, y_test, verbose=1)

Upload the model

run.upload_file(model_name, model_path)

if scores[0] > best_test_acc:

 # Register the best model as a new version

 run.register_model(model_name, model_path=model_name)

Preparing your Azure Machine Learning workspace | 85

In the preceding code, we now register the model only if the score of the new model
is higher than the previously stored best score. Nevertheless, we upload and track
the model binaries with the experiment run. Now that we know how to run a simple
experiment, let's learn how to log metrics and track results in the next section.

Logging metrics and tracking results

We already saw three useful features to track snapshot code, upload output artifacts,
and register-trained model files in your Azure Machine Learning workspace. These
features can be added to any existing experimentation and training Python script or
notebook with a few lines of code. In the same way, we can extend the experimentation
script to also track all kinds of variables, such as training accuracy and validation loss
per epoch as well as the test set accuracy of the best model.

Using the run.log() method, you can track any parameter during training and
experimentation. You simply supply a name and a value, and Azure will do the rest for
you. The backend automatically detects if you send a list of values—hence multiple
values with the same key when you log the same value multiple times in the same
run—or a single value per run, for example, the test performance. In the Azure Machine
Learning UI, these values will be automatically used to show your training performance.
A list of values is used to visualize your run performance, while a single value per run
will be used to show your experiment performance.

Let's look at an example where we use both types of metrics. Here is a simple snippet
showing how you could track training, validation, and testing performance:

for i in range(epochs):

 model.fit(X_train, y_train)

 scores = model.evaluate(x_val, y_val)

 run.log('Validation loss', scores[0])

 run.log('Validation accuracy', scores[1])

Evaluate trained model

scores = model.evaluate(x_test, y_test)

run.log('Test loss', scores[0])

run.log('Test accuracy', scores[1])

86 | Data experimentation and visualization using Azure

The preceding code logs the values to the ML workspace run. When you open the run in
the UI in the Azure portal, the list values are automatically converted into line charts, as
shown in Figure 3.6:

Figure 3.6: The status of running code in Azure Machine Learning, showing test accuracy,
test loss, and val_loss in the chart

Another nifty feature is that the ML workspace experiment gives you a nice overview
of all your runs. It automatically uses the numeric values that were logged per run and
displays them on a dashboard. You can modify the displayed values and the aggregation
method used to aggregate those values over the individual runs.

Figure 3.7 shows the minimum testing loss as well as the maximum testing accuracy
directly on the experiment's dashboard:

Preparing your Azure Machine Learning workspace | 87

Figure 3.7: The experiment dashboard in Azure Machine Learning, showing
the minimum testing loss and the maximum testing accuracy

This is the simplest method of tracking values from the runs and displaying them with
the corresponding experiments. However, we can already see that these intelligent
visualizations are also very helpful. It's worth mentioning that all this works by simply
adding a few lines of code to your existing ML training scripts independently of which
framework you are using.

The command for logging values to Azure Machine Learning can be easily transformed
into a higher-level operator to extend your ML projects. One example would be a Keras
callback to execute each epoch in a fit generator. We can write such a callback function
similar to the built-in RemoteMonitor callback:

from keras.callbacks import Callback

import numpy as np

class AzureMlKerasCallback(Callback):

 def init (self, run)

 super(AzureMlKerasCallback, self). init ()

 self.run = run

 def on_epoch_end(self, epoch, logs=None):

 logs = logs or {}

 send = {} send['epoch'] = epoch

88 | Data experimentation and visualization using Azure

 for k, v in logs.items():

 if isinstance(v, (np.ndarray, np.generic)):

 send[k] = v.item()

 else:

 send[k] = v

for k, v in send.items():

 if isinstance(v, list):

 self.run.log_list(k, v)

 else:

 self.run.log(k, v)

The preceding code implements a simple Keras callback function. It collects the metrics
to send in a dictionary, either as an array or a single metric. Now, instead of manually
logging each parameter, we simply use the callback function in the Keras training script
as shown in the following code:

Create an Azure Machine Learning monitor callback

azureml_cb = AzureMlKerasCallback(run)

model.fit(x_train, y_train,

 batch_size=batch_size,

 epochs=epochs,

 validation_data=(x_test, y_test),

 callbacks=[azureml_cb])

The preceding code extends Keras naturally using a callback function to track training
and validation loss and accuracy in Azure Machine Learning. You can find the full
working example in the source code provided with this book. Similar modules can be
written for other ML libraries as well; we leave this as an exercise for you.

Scheduling and running scripts

In the previous section, we saw how you can annotate your existing ML
experimentation and training code with a few lines of code, in order to track relevant
metrics and run artifacts in your workspace. In this section, we move from invoking the
training script directly to scheduling the training script to run on the local machine.
You might immediately ask why this extra step is useful because there are not many
differences between invoking the training script directly versus scheduling the training
script to run locally.

Preparing your Azure Machine Learning workspace | 89

The main motivation behind this exercise is that in the subsequent step, we can change
the execution target to a remote target, and run the training code on a compute cluster
in the cloud instead of the local machine. This will be a huge benefit as we can now
easily test code locally and later deploy the same code to a highly scalable compute
environment in the cloud.

One more difference is that when scheduling the training script instead of invoking it,
the standard output and error streams, as well as all files in the logs directory will be
streamed directly to the Azure Machine Learning workspace run. This gives you a great
benefit—now, you can track the script output in real time in your ML workspace, even if
your code is running on the compute cluster.

Let's implement this in an authoring script. We call it an authoring script (or authoring
environment), when the script or environment's job is to schedule another training or
experimentation script. We refer to the execution script (or execution environment)
when we speak about the script or environment that actually runs and executes the
training or experimentation script.

We need to define two things in the authoring script—a run configuration,
RunConfiguration, that defines the execution environment and a run script
configuration, ScriptRunConfig, that specifies the script that should be executed. Here
is a code snippet that defines both:

from azureml.core.runconfig import RunConfiguration

from azureml.core import ScriptRunConfig

import os

run_local = RunConfiguration() run_local.environment.python.user_managed_
dependencies = True

script_folder = os.path.join(os.getcwd(), 'examples')

src = ScriptRunConfig(source_directory=script_folder,

 script='cifar10_cnn_remote.py',

 run_config=run_local)

run = exp.submit(src)

run.wait_for_completion(show_output = True)

In the preceding code, we provide the exp object as in the previous sections. First,
we create a local run configuration with user-managed dependencies to define the
execution environment. This means that when we run locally, all dependencies are
already provided. When we move this training run to the cloud afterward, we only have
to change the run configuration.

90 | Data experimentation and visualization using Azure

In the next line, we define the directory and training file we want to execute locally.
Finally, we submit the script, run it, and wait for its completion. Now we can follow the
output of the script in the Logs section of the ML workspace run, as shown in Figure 3.8:

Figure 3.8: The Outputs + logs tab in the Azure Machine Learning workspace

This is very handy as, now, we don't really need to know where the code is ultimately
executed. All we care about is seeing the output; the progress; and tracking all metrics,
generated models, and all other artifacts. The link to the current run can be retrieved
by calling the print(run.get_portal_url()) method. However, instead of navigating
to the Azure portal every time we run a training script, we can embed a widget in our
notebook environment to give us the same (and more) functionality—directly within
JupyterLab. To do so, we need to replace the run.wait_for_completion() line with the
following snippet:

Preparing your Azure Machine Learning workspace | 91

from azureml.widgets import RunDetails

RunDetails(run).show()

Finally, if we want to move to a remote execution environment, we need to infer the run
context. In the execution script, we now load the run object from the current execution
context instead of creating a new run as in the previous sections. We can change the
exp.start_logging call with the following statement:

from azureml.core import Run

Load the current run

run = Run.get_context()

In the preceding code, we replace the previous start_logging() method with code
automatically inferring the run object from the current context. The run object will
be automatically linked with the experiment when it was scheduled through the
experiment. This is super-handy for remote execution as we don't need to explicitly
specify the run object anymore.

Using the inferred run object, we can log values, upload files and folders, and register
models exactly as in the previous sections. You can find a working example in the
source code provided with this book.

Adding cloud compute to the workspace

In Azure Machine Learning, you can use two different types of compute targets in
Azure—managed and unmanaged. Managed compute will be managed directly from
within the ML workspace, whereas unmanaged compute will only be attached to your
workspace. When an ML workspace is deleted, all managed compute targets will be
deleted as well, while unmanaged (attached) compute targets will continue to exist.

The recommended compute target for training ML models in Azure is the managed
Azure Machine Learning compute service—an auto-scaling compute cluster that is
directly managed within your Azure subscription. If you have already used Azure for
batch workloads, you will find it similar to Azure Batch and Azure Batch AI, with less
configuration and tightly embedded in Azure Machine Learning. You can find it in the
UI under the menu for Compute by clicking on Training clusters. In the SDK, we use
the Amlcompute compute type (short for Azure Machine Learning Compute cluster) to
define such a training cluster.

92 | Data experimentation and visualization using Azure

Let's use the Azure Machine Learning Python SDK to create a new compute target as an
execution environment:

from azureml.core.compute import ComputeTarget, AmlCompute

compute_config = AmlCompute.provisioning_configuration(

 vm_size='STANDARD_D2_V2',

 max_nodes=4)

cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name,

 compute_config)

cpu_cluster.wait_for_completion(show_output=True)

The preceding code creates an auto-scaling compute cluster optimized for ML directly
in your Azure Machine Learning workspace using STANDARD_D2_V2 VMs (2 CPUs, 7 GB
RAM, and 100 GB HDD) as worker nodes. As you can see, we are tuning the maximum
number of worker nodes as well as the required VM size, and many more parameters,
such as VNet, Subnet, SSL, or load balancer configuration. You can even configure
low-priority VMs for your compute cluster.

You can also define VM types with GPUs as your worker nodes—for example, Standard_
NC6 (6 CPUs, 56 GB RAM, 340 GB SSD, 1 GPU, and 12 GB GPU memory)—by simply
changing the configuration. This is quite nice as, in contrast to other managed clusters
such as Azure Databricks, you don't pay for a head or master node, only the worker
nodes. We will go into a lot more detail about VM types for deep learning in Chapter 8,
Training deep neural networks on Azure, and run distributed training on GPU clusters in
Chapter 10, Distributed machine learning on Azure.

Note

It's worth noting that setting up and configuring your cluster can be also done
using the Azure Machine Learning CLI or any other supported language of the
Azure Machine Learning SDK.

You might ask yourself what VM types are available for Azure Machine Learning in a
specific location. You can retrieve an up-to-date list using the AmlCompute.supported_
vmsizes() method and passing your workspace and, optionally, your target location:

from azureml.core.compute import AmlCompute

AmlCompute.supported_vmsizes(workspace=ws, location='northeurope')

Preparing your Azure Machine Learning workspace | 93

Now we go back to the authoring script and change the execution target to execute the
training script on this remote compute cluster, amldemocompute. In this case, we load the
compute target by name and wait until it is available—if it doesn't exist, we create it. The
following script can be very handy when wrapped in a function taking the configuration
as parameters and blocking execution until the cluster is created:

from azureml.core.compute import ComputeTarget, AmlCompute

from azureml.core.compute_target import ComputeTargetException

Choose a name for your AML cluster

aml_cluster_name = "amldemocompute"

Configure your compute cluster

vm_size='STANDARD_D2_V2'

max_nodes=4

Verify that the cluster exists already

try:

 aml_cluster = ComputeTarget(workspace=ws, name=aml_cluster_name)

except ComputeTargetException:

 print('Cluster not '%s' found, creating one now.' % aml_cluster_name)

 compute_config = AmlCompute.provisioning_configuration(

 vm_size=vm_size, max_nodes=max_nodes)

 aml_cluster = ComputeTarget.create(ws, aml_cluster_name, compute_config)

Wait until the cluster is ready aml_cluster.wait_for_completion(show_
output=True)

In the preceding code, we re-use the functionality from before to create clusters and
embed them in a function that either returns the cluster and starts it up if it exists, or
creates an entirely new one.

94 | Data experimentation and visualization using Azure

Next, we have to configure the run configuration and hence the environment on the
compute target in which we want to run our code. This means we need to configure
all our libraries, frameworks, and services that the training script requires. This
environment can be defined by a Docker base image as well as additional Conda
packages:

from azureml.core.runconfig import RunConfiguration

from azureml.core.conda_dependencies import CondaDependencies

from azureml.core.runconfig import DEFAULT_CPU_IMAGE

Create a remote run configuration

run_amlcompute = RunConfiguration()

run_amlcompute.target = aml_cluster

run_amlcompute.environment.docker.enabled = True

run_amlcompute.environment.docker.base_image = DEFAULT_CPU_IMAGE

ds_packages = [

 'numpy', 'pandas', 'matplotlib', 'seaborn', 'scikit-learn', 'keras'

]

run_amlcompute.auto_prepare_environment = True

run_amlcompute.environment.python.user_managed_dependencies = False

run_amlcompute.environment.python.conda_dependencies =

CondaDependencies.create(conda_packages=ds_packages)

In the preceding code, we create a new run configuration and specify the base Docker
image, as well as additional Conda packages to be installed in this environment. We
define common data science libraries and attach them to our Conda environment in the
training cluster.

Note

Please note that once you create this run configuration for a job run, it will be
loaded into your Container Registry, which is automatically added to your Azure
Machine Learning workspace.

Preparing your Azure Machine Learning workspace | 95

Finally, we modify the script configuration such that it uses the newly created run
configuration as a compute target:

from azureml.core import ScriptRunConfig

from azureml.widgets import RunDetails

script = 'cifar10_cnn_remote.py'

script_folder = os.path.join(os.getcwd(), 'examples')

src = ScriptRunConfig (

 source_directory=script_folder,

 script=script,

 run_config=run_amlcompute)

run = exp.submit(src)

RunDetails(run).show()

The training script is now executed in the remote compute target on Azure. In the ML
workspace, the collection snapshot, outputs, and logs look very similar to the local run.
However, we can now also see the logs of the Docker environment build used for this
run, as shown in Figure 3.9:

Figure 3.9: The logs of the Docker environment in the Azure Machine Learning workspace

96 | Data experimentation and visualization using Azure

Let's capture again what happened when we submitted the run to Azure Machine
Learning:

• Azure Machine Learning builds the configured environment in Docker, if it doesn't
exist already.

• Azure Machine Learning registers your environment in the private container
registry, so it can be reused for other scripts and deployments.

• Azure Machine Learning queues your script execution.

• Azure Machine Learning compute initializes and scales up a compute node.

• Azure Machine Learning compute executes the script.

• Azure Machine Learning compute captures logs, artifacts, and metrics and
streams them to Azure Machine Learning.

• Azure Machine Learning stores all artifacts in Blob storage, and your metrics in
Application Insights.

• Azure Machine Learning provides you with all the information about the run
through the UI or API.

• Azure Machine Learning inlines all logs in the Juptyer notebook used as the
authoring environment.

• Azure Machine Learning compute automatically scales down the cluster after x
minutes of inactivity.

This is simply incredible. Given that it took us maybe 5 minutes to set up the Azure
Machine Learning workspace, we get a full-fledged batch compute scheduling and
execution environment for all your ML workloads. Many bits and pieces of this
environment can be tuned and configured to your liking—and the best of all: everything
can be automated through the Azure CLI or the Azure SDK. In the following chapters of
this book, we will use the Python SDK to configure, start, scale, and delete clusters for
training and scoring.

In the next chapter, we will learn how to perform dimensionality reduction to visualize
high-dimensional datasets and automatically track them like metrics in Azure Machine
Learning.

Visualizing high-dimensional data | 97

Visualizing high-dimensional data
One of the first steps when working with a new dataset should be to systematically
look into the data, finding patterns, hypotheses, and insights by manually inspecting
your dataset. While this advice might make sense to you at first, it will be hard to follow
when your dataset contains thousands of numerical values in a spreadsheet. How
should you navigate the data? What should you look for? And what insights can you get?

A great way to get quick insights and a good understanding of your data is to visualize
it. This will also help you to identify clusters in your data and irregularities and
anomalies—all things that need to be considered in all further data processing. But how
can you visualize a dataset with 10, 100, 1,000 feature dimensions? And where should
you keep the analysis?

In this section, we will answer all these questions. First, we will explore Azure Machine
Learning functionality to register Matplotlib figures with your experiments. This will be
extremely helpful for all your feature work, as you will be able to attach visualizations
to all your experiments and hence help with understanding your data, models, and
experiments at a later stage.

Then, we will look into the linear embedding techniques PCA—unsupervised
dimensionality reduction—and LDA—a supervised technique to compute discriminant
vectors in a dataset given the target labels too. Then, we will compare both techniques
to two popular unsupervised non-linear embedding techniques, t-SNE and UMAP—a
generalized and faster version of t-SNE. Having those four techniques in your toolchain
will help you to understand datasets and create meaningful visualizations.

Tracking figures in experiments in Azure Machine Learning

In the previous section, we discovered how to track metrics and files for ML
experiments using Azure Machine Learning. Other important outputs of your data
transformation and ML scripts are visualizations, figures of data distributions, insights
about models, and explaining results. Therefore, Azure Machine Learning provides a
similar way to track metrics for images, figures, and Matplotlib references.

Let's take a look at a typical scenario; we will start at the simplest way to look at high-
dimensional data: a two-dimensional grid visualizing all combinations of features.
This visualization is also called a pairplot and is a standard visualization type in the
visualization library seaborn.

98 | Data experimentation and visualization using Azure

Figure 3.10 shows the pairplot of the popular iris flower dataset which contains four
feature dimensions (sepal_length, sepal_width, petal_length, and petal_width)
and a target class (species). Within the grid cells, we visualize a tiny scatter plot
of combinations of two feature dimensions. Along the diagonal, we simply plot the
distribution of the feature dimension. As additional information, we encode the target
class as hue in each cell:

Figure 3.10: A pairplot visualizing high-dimensional data in Azure Machine Learning

To replicate this plot in a notebook, run the following snippet. First, we load the iris
dataset packaged in the seaborn library, and next, we plot it calling the pairplot()
method. This will return a Matplotlib figure and display it in a notebook environment:

import seaborn as sns

sns.set(style="ticks")

df = sns.load_dataset("iris")

sns.pairplot(df, hue="species")

Visualizing high-dimensional data | 99

The preceding code is interesting because it is a very simple way of visualizing high-
dimensional data, similar to what you will do first when receiving a new dataset. While
it is not really useful for very high-dimensional data, it serves as a good starting point
for us. We will look into much more complicated techniques in the following sections.

What is more interesting is how we can automatically embed code like the preceding
in our data experimentation and preparation script, and later, in the training and
optimization pipelines. With a few lines of code, we can track all Matplotlib figures and
attach them to our experimentation run. To do so, we only have to pass the Matplotlib
reference to the run.log_image() method and give it an appropriate name. The
following snippet shows how this would look in an experiment:

with exp.start_logging() as run:

 fig = sns.pairplot(df, hue="species")

 run.log_image("pairplot", plot=fig)

Now, this is the amazing part. By calling the function with the Matplotlib reference,
Azure Machine Learning will render the figure, save it, and attach it to the experiment
run. Figure 3.11 shows the Azure Machine Learning UI with the Images tab clicked. You
can see the pairplot image that we just created and registered attached to the run:

Figure 3.11: The Images tab, showing a pairplot in the Azure Machine Learning workspace

100 | Data experimentation and visualization using Azure

It seems like a tiny feature but it is insanely useful in real-world experimentation. Get
used to automatically generating plots of your data, models, and results and attach
them to your run. Whenever you are going through your experiments later, you'll have
all the visualizations already attached to your run, metrics, and configuration.

Think about storing regression plots when training regression models, and confusion
matrices and ROC curve when training classification models. Store your feature
importance when training tree-based ensembles and activations for neural networks.
You implement this once and add a ton of useful information to your data and ML
pipelines.

Note

When using Azure Automated Machine Learning and HyperDrive to optimize
parameters, preprocessing, feature engineering, and model selection, you will get
a ton of generated visualizations out of the box to help you understand the data,
model, and results.

Let's discover some algorithms that are useful for visualizing dataset insights and high-
dimensional data. The code to generate the embeddings is omitted for brevity in this
section, but can be found in the corresponding Github repository of this book.

Unsupervised dimensionality reduction with PCA

The most popular linear dimensionality reduction technique is PCA, as it is an
unsupervised method and hence doesn't need any training labels. PCA embedding
linearly transforms a dataset such that the resulting projection is uncorrelated. The
axes of this project are called principal components and are computed in such a way
that each of them has the next highest variance.

The principal components are the directions of the highest variance in the data. This
means that the principal components or Eigenvectors describe the strongest direction
of the dataset, and the next dimension shows the orthogonal difference from the
previous direction. In NLP, the main components correspond with high-level concepts—
in recommendation engines, they correspond with user or item traits.

PCA can be computed as Eigenvalue decomposition of the covariance or correlation
matrix, or on a non-square matrix by using SVD. PCA and Eigenvalue decomposition are
often used as a data experimentation step for visualization, whereas SVD is often used
as dimensionality reduction for sparse datasets, for example, a Bag-of-Words model for
NLP. We will see SVD being used in practice in Chapter 6, Advanced feature extraction
with NLP.

Visualizing high-dimensional data | 101

An embedding technique can be used as dimensionality reduction by simply removing
all but the first x components because these first—and largest—components explain a
certain percentage of the variance of the dataset. Hence we remove data with a low
variance to receive a lower-dimensional dataset.

To visualize data after PCA in two dimensions (or after any embedding technique) is
to visualize the first two components of the transformed dataset – the two largest
principal components. The resulting data is rotated along the axis—the principal
components—scaled, and centered at zero. As you can see in the following figures, all
visualizations have the highest variance projected at the x axis, and the second-highest
across the y axis, and so on.

The figures show PCA applied to three datasets of increasing complexity:

• The iris flower dataset: three classes and four feature dimensions

• The UCI wine recognition dataset: three classes and thirteen feature dimensions

• The MNIST handwritten digits dataset: 10 classes and 784 feature dimensions (28
x 28 pixel images)

As a first observation, we should acknowledge that it is a great first step that we can
show all these three datasets in only two dimensions, and immediately recognize
clusters. If you go back to the iris flower pairplot visualization and look at the sepal
width versus sepal length scatter plot, we wouldn't be able to see linear separable
clusters in the data. However, by projecting the data across the first two principal
components, we can see in the Figure 3.12 on the left that all clusters look linearly
separable (in two dimensions).

When looking at the UCI wine dataset on the right, we can already tell that the clusters
are not extremely obvious anymore. Now, 13 feature dimensions are projected along the
first two principal components, the highest variance along the x axis and the second-
highest variance along the x axis. It's typical in PCA that the cluster shape is aligned
with the x axis, because this is how the algorithm works:

Figure 3.12: Projecting the iris flower and the UCI wine recognition dataset in two dimensions

102 | Data experimentation and visualization using Azure

Finally, when looking at the much more complex embedding of the MNIST handwritten
digits dataset, we cannot see many clusters besides maybe the cluster for the digit 0
on top. The data is centered across zero and scaled to a range between -30 and 30 as
shown in Figure 3.13. Hence, we can already tell the downsides of PCA—it doesn't take
into account any target labels and hence doesn't optimize for separable classes:

Figure 3.13: A complex embedding of the MNIST handwritten digits dataset

Let's look at a technique that takes target labels into account.

Visualizing high-dimensional data | 103

Using LDA for supervised projections

In LDA, we perform a linear transformation of the input data—similar to PCA—and
optimize the transformation such that the resulting directions have the highest inter-
cluster variance and the lowest intra-cluster variance. This means that the optimization
tries to keep samples of the same cluster close to the cluster's mean, while at the same
time, tries to keep the cluster's means as far apart as possible.

In LDA, we also receive a linear weighted set of directions as a resulting transformation.
The data is centered around 0 and the directions are ordered by highest inter-cluster
variance. Hence, in that sense, LDA is like PCA with taking target labels into account.
Both LDA and PCA have no real tuning knobs, besides the number of components we
want to keep in the projection and probably a random initialization seed.

Figure 3.14 shows the visualizations of the same datasets as in the previous section,
we can see that the data is transformed into two dimensions in such a way that the
cluster means are the farthest apart from each other across the x axis. We observe the
same effect for both the iris (left) and the UCI wine (right) recognition dataset. Another
interesting fact that we can observe in both embeddings is that the data also becomes
linearly separable. We can almost put two straight lines in both visualizations to
separate the clusters from each other:

Figure 3.14: An LDA embedding of the iris (left) and UCI wine recognition (right) datasets

104 | Data experimentation and visualization using Azure

The LDA embedding for both of the preceding datasets looks quite good in terms of the
separability of the data by classes. Figure 3.14 gives a confident estimate that a linear
classifier for both datasets should achieve great performance, for example, above 95%
accuracy. While this might be just a ballpark estimate, we already know what to expect
from a linear classifier with minimal analysis and data preprocessing. Unfortunately,
most real-world embeddings look a lot more like Figure 3.15 which is a lot less like the
previous two:

Figure 3.15: A non-separable, high-dimensional data visualization

Most real-world data is high-dimensional and often has above 10 or even 100 feature
dimensions. In the preceding example, we again see a good separation of the cluster
containing the 0 digits at the bottom and the two clusters of fours and sixes on the
left side. All other clusters are drawn on top of each other and don't look to be linearly
separable.

Visualizing high-dimensional data | 105

Hence, we could tell that a linear classifier won't perform well and will have maybe only
around 30% accuracy—which is still a lot better than random. However, we can't really
tell what performance we would expect from a complex non-linear model, maybe even
a non- parametric model such as a decision tree-based ensemble classifier.

As we can see, LDA unsurprisingly performs a lot better than PCA as it takes class
labels into account. It's a great embedding technique for linearly separable datasets
with less than 100 dimensions and categorical target variables. An extension of LDA is
Quadratic Discriminant Analysis (QDA), which performs a non-linear projection using
combinations of two variables.

If you are dealing with continuous target variables, you can use a very similar technique
called Analysis of variance (ANOVA) to model the variance between clusters. The result
of ANOVA transformations indicates whether the variance in the dataset is attributed to
a combination of the variance of different components.

As we saw, both PCA and LDA didn't perform well on separating high-dimensional data
such as image data. In the handwritten image dataset, we are dealing with only 784
feature dimensions from 28 x 28 pixel images. Imagine, your dataset consists of 1024 x
1024 pixel images – your dataset would have more than 1 million dimensions. Hence, we
really need a better embedding technique for very high-dimensional datasets.

Non-linear dimension reduction with t-SNE

Projections of high-dimensional datasets into two or three dimensions were extremely
difficult and cumbersome a couple of years ago. If you wanted to visualize image data
on a two-dimensional graph, you could use any of the previously discussed techniques—
if they could compute a result—or try exotic embeddings such as self-organizing maps.

However, in late 2012, t-SNE embedding was used by the team ranked first in the Merck
Viz Kaggle competition—a rather unconventional way to release a great embedding
algorithm. However, since the end of that competition, t-SNE has been used regularly
in other Kaggle competitions and by large companies for embedding high-dimensional
datasets with great success.

SNE projects high-dimensional features into two- or three-dimensional space while
minimizing the difference of similar points in high-and low-dimensional space. Hence,
high-dimensional feature vectors that are close to each other are very likely to be close
to each other in the two-dimensional embedding.

Figure 3.16 shows t-SNE applied to the iris and UCI wine recognition dataset. As we can
see, the complex non-linear embedding doesn't perform a lot better than the simple
PCA or LDA techniques. However, its real power is highlighted on very large and high-
dimensional datasets, up to 30 million observations of thousands of feature dimensions:

106 | Data experimentation and visualization using Azure

Figure 3.16: Iris and UCI wine recognition dataset visualizations using t-SNE

As we can see in Figure 3.17, t-SNE performs a lot better on the MNIST dataset and
effortlessly separates the clusters of 10 handwritten digits. While it seemed impossible
to separate the data in the two-dimensional LDA embedding—where the first two
dimensions only explain 47% of the total variance—the t-SNE embedding suggests that
99% accuracy will be possible:

Figure 3.17: Achieving the highest accuracy using t-SNE embedding for data visualization

Visualizing high-dimensional data | 107

What is beautiful with this type of visualization is not only that we can see that the data
is in fact separable, we can also imagine how the confusion matrix will look like when a
classifier gets trained on the data—simply by looking at the preceding visualization. Here
are some observations (which we couldn't easily identify in PCA or LDA embedding)
about the data that we can infer from looking at the embedding:

• There are three clusters of ones where one cluster is further away from the mean.

• There are three clusters of nines where one cluster looks like ones and another
looks like sevens.

• There is a cluster of threes that looks like eights.

• There is a small cluster of twos that looks like eights.

• The cluster of threes and nines are quite close so they might look similar.

• The clusters of zeros, fours, and sixes are distant from other clusters.

These are brilliant insights, as you now know what to expect and what to look for in
your data when manually exploring samples. It also helps you to tune your feature
engineering to, for example, try to differentiate ones, sevens, and nines as they will lead
to most misclassification later on.

Generalizing t-SNE with UMAP

UMAP for dimension reduction is an algorithm for general-purpose manifold learning
and dimension reduction. It is a generalization of t-SNE based on Riemannian geometry
and algebraic topology.

In general, UMAP performs similar results to t-SNE with a topological approach, better
scalability of feature dimensions, and faster computation at runtime. Due to the fact
that it is faster and performs slightly better in terms of topological structure, it is
quickly gaining popularity.

If we look again at embeddings of the iris and UCI wine recognition datasets, we
see a similar effect as previously with t-SNE. As shown in Figure 3.18, the resulting
embeddings look reasonable but not better than the linearly separable results of LDA.
However, we can't measure computational performance by only comparing the results,
and that's where UMAP really shines:

108 | Data experimentation and visualization using Azure

Figure 3.18: A high-dimensional data visualization using t-SNE with UMAP

When it comes to higher-dimensional data, such as the MNIST handwritten digits
dataset, UMAP performs exceptionally well as a two-dimensional embedding technique.
It reduces clusters to completely separable entities in the embedding, with minimal
overlaps and a great distance between the clusters themselves. Similar observations
such as clusters of classes 1 and 9 are still possible, but the clusters look a lot more
separable in Figure 3.19:

Figure 3.19: UMAP performance in the high-dimensional data visualization

Summary | 109

From these data experimentation and visualization techniques, we would like you to
take away the following key knowledge:

• Perform PCA to try to analyze Eigenvectors.

• Perform LDA or ANOVA to understand the variance of your data.

• Perform UMAP embedding if you have complex high-dimensional data.

Armed with this knowledge, we can dive right into data processing and feature
engineering, knowing which data samples will be easy to handle and which samples will
cause high mis-classification rates in the future.

Summary
In this chapter, we set up our Azure Machine Learning workspace, created our first
Azure Machine Learning compute cluster (Amlcompute) and ran an initial experiment
on the cluster. Everything is automated, from the setup of the workspace, to cluster
creation and the submission of the training script.

Azure Machine Learning helps you keep track of experiments, metrics, training scripts,
logs, trained models, artifacts, metrics, images, and much more. In this chapter, we
started from a small ML script and, step by step, added additional functionality to take
advantage of modern ML infrastructure and management techniques. We registered
experiments, executed runs locally and on the compute cluster, stored a snapshot of
the training folder with each run, collected training scores per epoch and a test score
per run, and streamed the output directly back to the notebook environment. With a
few lines of code, you can compare the trained model with all previously registered
models. You can then register the model as a new version.

You then learned about dimensionality reduction techniques to visualize high-
dimensional datasets. What's great about Azure Machine Learning is that you can
also perform your data experimentation and analysis on the compute cluster and
keep track of all generated figures and outputs. We compared unsupervised PCA to
supervised LDA—both linear embeddings. Then, we compared linear techniques to
non-linear dimensionality reductions such as t-SNE and the generalized form, UMAP.
All these techniques are extremely useful for you to understand your data, the principal
components, discriminant directions, and separability.

In the next chapter, using all the knowledge we've learned so far, we'll get started
modeling our data by performing data loading (ETL), data preparation, and feature
extraction. Try to make it a habit to create visualizations of your data and attach them
as figures in your Azure Machine Learning experiments.

In this chapter, we will explore data preparation and Extract, Transform, and Load
(ETL) techniques within Azure Machine Learning. We will start by looking behind the
scenes of datasets and data stores, the abstraction for physical data storage systems.
You will learn how to create data stores, upload data to the store, register and manage
the data as Azure Machine Learning datasets, and later explore the data stored in these
datasets. This will help you to abstract the data from the consumer and build separate
parallel workflows for data engineers and data scientists.

In the subsequent section, we look at data transformations in Azure Machine Learning
using Azure Machine Learning DataPrep, especially extracting, transforming, and
loading the data. This enables you to build enterprise-grade data pipelines handling
outliers, filtering data, and filling missing values.

ETL, data
preparation, and

feature extraction

4

112 | ETL, data preparation, and feature extraction

The following topics will be covered in this chapter:

• Managing data and datasets in the cloud

• Preprocessing and feature engineering with Azure Machine Learning DataPrep

Managing data and datasets in the cloud
When you run an ML experiment or pipeline on your local development machine, you
often don't need to manage your datasets as they are stored locally. However, as soon as
you start training an ML model on remote compute targets, such as a VM in the cloud,
you must make sure that the script can access the training data. And if you deploy a
model that requires a certain dataset during scoring—for example, the lookup data for
labels and the like—then this environment needs to access the data as well. As you can
see, it makes sense to abstract the datasets for an ML project, both from the point of
view of physical access and access permissions.

First, we will show how you can create a data store object to connect the Azure
Machine Learning workspace to other data services, such as blob or file storage, data
lake storage, and relational data stores, such as SQL Server and PostgreSQL. Once a
data store is attached, we can register data from this data store—for example, a blob in
blob storage, a file in file storage, or a table in a relational database—as a data store in
Azure Machine Learning. By doing this, the dataset can be accessed from all execution
environments, such as in the local development machine, on the Azure Machine
Learning compute as a remote compute target, or in the scoring environment.

Next, we will look into a quick way to explore the datasets. Depending on the size of
the dataset, you can access the data as an in-memory pandas dataframe or resilient
distributed Spark dataframe. Finally, we will show how to write your datasets back to
the original data store object.

Let's jump right in and find out how to move data to the cloud effectively.

Getting data into the cloud

Before we go into details about how to register data stores and datasets in Azure
Machine Learning, I want to emphasize that you can load any data from any location
to your experiment, data preparation, or ML script because you are running inside
a Python interpreter. However, you would have to distribute the access keys and
passwords to log in to the data sources and convert the data to the expected format.

Managing data and datasets in the cloud | 113

By abstracting both the data storage (for example, file storage, blob storage, and
relational database) and datasets (for example, file, folder, and table), you can provide
a unified abstract view on the data to consume different datasets from various sources
from a unified interface. This has many advantages, including unified access control and
unified data format conversions. In this section, we will look at how to register a data
store and dataset to consume data in multiple environments.

Organizing data in data stores and datasets

When creating an ML service workspace, you automatically deploy a blob storage to
the same resource group. This storage is used internally for storing the code snapshots,
outputs, and logs from experiment runs, but is also used as the default data store for
datasets. However, in this section, we will create a new blob storage account to store all
datasets:

1. Let's create a new blob storage account, mldemoblob. Please note that the name of
each storage account must be unique. For the purpose of this book, we will create
it as locally redundant storage (Standard_LRS) only. However, you can even deploy
it as geo-redundant storage with read access on the replica. Once the account
is created, we will extract and store the Shared Access Signature (SAS) in the
ACCOUNT_KEY variable:

$ az storage account create -n mldemoblob -g mldemo \
 --sku Standard_LRS --encryption-services blob

$ ACCOUNT_KEY=$(az storage account keys list -n mldemoblob -g mldemo \
 | jq '.[0].value')

In the preceding snippet, we use the CLI command jq. This is a very popular
tool for parsing JSON responses and applying queries on top. If you don't have it
installed, make sure that you install it now and make it available in your path.

2. Next, we create a container inside the blob storage account that will hold all our
datasets later. We need to use the ACCOUNT_KEY variable to create the container:

$ az storage container create -n data --account-name mldemoblob \
 --account-key ${ACCOUNT_KEY}

114 | ETL, data preparation, and feature extraction

3. Finally, we can attach the blob storage container to the Azure Machine Learning
workspace as a datastore under the name mldemodatastore. This allows us to use
the abstract data store in the ML service without worrying about the storage
technology under the hood. We also need an SAS to authorize the ML service
to interact with the blob container. We could use either a container-specific or
account-specific access token—in our case, we will use the same account SAS
stored in the ACCOUNT_KEY variable:

$ az ml datastore attach-blob -n mldemodatastore -a mldemoblob -c data \
 --account-key ${ACCOUNT_KEY}

Now, we can start uploading data to this blob storage container and register this
data as datasets in the ML service. The great benefit of this solution is that from
now on, you can access your data from any ML service environment from this data
store—be it your local machine, a remote distributed compute cluster, or even the
container instance that runs your scoring service.

4. Let's go ahead and upload some data—in our case, we want to upload a local
training folder to the blob storage account. You can achieve this using the
command line or the cross-platform Azure Storage Explorer application:

$ az storage blob upload-batch \
 --account-name mldemoblob --account-key ${ACCOUNT_KEY} \
 --destination "data/training" --source "./training"

5. Next, we open a Python authoring environment and register the data as dataset.
First, we need to retrieve a reference to the datastore instance. Next, we can
define the path of the data on this data store and load the data using the Dataset.
auto_read_files() method. Finally, we can register the data as a new dataset in
Azure Machine Learning. The definition attribute will show us the latest version
of the dataset and the time it was updated:

from azureml.core.datastore import Datastore
from azureml.core.dataset import Dataset

datastore_name = 'mldemodatastore'
dataset_name = 'training.data.raw'

Retrieve the datastore
datastore = Datastore.get(ws, datastore_name)
datapath = datastore.path('training/raw_data.csv')
dataset = Dataset.auto_read_files(datapath)

Managing data and datasets in the cloud | 115

Register the dataset

def = dataset.register(workspace=ws, name=dataset_name,
 exist_ok=True, update_if_exist=True)

print(def.definition)

6. Ultimately, we can modify our pandas or Spark code to load the data using the
Azure Machine Learning dataset instead of the direct connection, and it will
handle data loading, authentication, and versioning automatically under the hood.
Here is a snippet of how this is done in pandas:

Access your dataset
dataset = Dataset.get(ws, dataset_name)

Load in-memory Dataset to your local machine as Pandas dataframe
df = dataset.to_pandas_dataframe()
print(df.head())

If you are using PySpark instead of Python you can use the following snippet.

Access your dataset
dataset = Dataset.get(ws, dataset_name)

Load in-memory Dataset to your local machine as pandas dataframe
df = dataset.to_spark_dataframe()
df.show()

As you can see, by abstracting the dataset and data store, you can now analyze, prepare,
and use your data in any environment automatically, be it your local machine, Azure
Machine Learning compute cluster, Databricks-distributed Spark environment, or any
compute target.

You have now learned how to load data into Azure Blob and register it as a dataset for
further use in all other environments. This is a useful skill for a data engineer who will
be responsible for cleaning and providing the data for business analysts, ML engineers,
and data scientists.

Next, let's look at how to manage these datasets from a data steward's perspective.

116 | ETL, data preparation, and feature extraction

Managing data in Azure Machine Learning

Despite the abstraction of data stores and datasets, there are many more advantages in
Azure Machine Learning to using datasets. Once you are responsible for a large amount
of data, you need to acquire skills to manage and organize datasets and data stores in
the cloud. Fortunately, Azure Machine Learning provides a large set of functionalities
to greatly facilitate working with the data and managing your data properly for
transparent end-to-end ML processes.

For an end-to-end, fully reproducible ML workflow, you need to look at three large
topics:

• Compute infrastructure

• Code

• Data

While an ML service helps to manage all three aspects, we will focus on the third point
of data management in the following sections. We will specifically see how to update
datasets using versions and definitions, how to manage the life cycle of datasets, and
how to manage snapshots for reproducible ML processes.

First, we will take a look at how to abstract datasets and data stores to dataset
definitions. This will help you to load data from a dataset definition without having to
know anything about the data location, storage format, encoding, and access control.
You can also version this dataset's definitions to keep your consumers up to date with
the latest changes.

Then, we will discover a way to make ML run in a reproducible manner, namely by
providing data snapshots. By having access to a vast amount of cheap and scalable
data storage, it is a good practice to create data snapshots for smaller and mid-sized
datasets. Dataset definitions makes this process very easy for you.

Finally, we will go through the life cycle of a dataset definition. This is a concept that
you should put in place when managing more than three different datasets for more
than three different data consumers. Your dataset definition can be easily compared to
a public API, which also needs to be documented, versioned, updated, and deprecated—
we will see the exact same for datasets.

Azure provides a fantastic way of abstracting and managing data stores and datasets.
Let's take a look.

Managing data and datasets in the cloud | 117

Versioning datasets and dataset definitions

Datasets in Azure Machine Learning can be versioned through dataset definitions. The
version is a monotonically increasing number that is incremented whenever new data
of the same dataset is registered using the Dataset.register() method and sets the
update_if_exist parameter to True. If the dataset has the same name as an existing
dataset, then the version of this dataset is incremented.

The version of each dataset is stored in its accompanying dataset definition:

Register the dataset once

dataset_reg = dataset.register(workspace=ws, name=dataset_name,

 exist_ok=True, update_if_exist=True)

print(dataset_reg.definition)

> VersionID: 1, State: active, Created: 2019-06-17 20:54:37.026860+00:00,

Modified: 2019-06-17 20:54:37.026860+00:00, Notes: None

Register the dataset with the same name a second time

dataset_reg = dataset.register(workspace=ws, name=dataset_name,

 exist_ok=True, update_if_exist=True)

print(dataset_reg.definition)

> VersionID: 2, State: active, Created: 2019-06-17 21:56:39.026860+00:00,

Modified: 2019-06-17 21:56:39.026860+00:00, Notes: None

As you can see, if you re-register a dataset of the same name, you will end up with a
dataset with an incremented version number. Hence, once your data is registered as a
dataset, it is automatically versioned and you can access specific versions of the data
from your code through the dataset definitions:

list all definitions for the dataset

dataset.get_definitions()

> VersionID: 1, State: active, Created: 2019-06-17 ...

> VersionID: 2, State: active, Created: 2019-06-17 ...

get definition of version 1

dataset.get_definition(version_id=1)

> VersionID: 1, State: active, Created: 2019-06-17 ...

118 | ETL, data preparation, and feature extraction

You might want to ask yourself what exactly such a dataset definition represents, and
why the version number is not assigned to the dataset directly. A dataset definition
describes a set of transformations performed on the raw data. These transformations
are automatically translated and applied to pandas or PySpark transformations when
the data is accessed through these interfaces.

A good example would be if the raw data contains many fields that should not be
exposed to the consumers of the data. Another common use case would be the
renaming of existing columns to common column names and simple transformations
and data assertions. Here is a small example of keeping just the relevant columns:

Update the dataset definition to select only relevant columns

def = def.keep_columns(['id', 'A', 'B', 'C'])

Update the dataset definition

dataset = dataset.update_definition(def, 'select relevant columns')

In the preceding code, we define a transformation via the DatasetDefinition.keep_
columns() method. We will see more of these methods in a later section in this chapter.
We can then use this definition to update the dataset and display only the relevant
columns to each data consumer. Moreover, you can now make sure that all your ML
pipelines always use the same dataset definition:

Access your dataset

dataset = Dataset.get(ws, dataset_name)

Get the dataset definition with version 1

def = dataset.get_definition(version_id=1)

Get the Pandas dataframe from this definition

df = def.to_pandas_dataframe()

If the data in the data storage system is overwritten in its original location (for example,
on blob storage) or changes (for example, on an RDBMS), then you cannot guarantee
that the same data is used for all experiments and training. In this case, you can
snapshot the dataset.

Managing data and datasets in the cloud | 119

Taking data snapshots for reproducibility

For reproducibility, validation, and auditing purposes, you might want to take snapshots
of datasets in your enterprise-grade ML pipeline. This will completely decouple the
work of ML engineers and data scientists from the work of data engineers and data
stewards. Both groups can work in parallel and run reproducible experiments while
working on the ingesting, cleaning, and quality of the data.

By default, a snapshot in Azure Machine Learning creates and stores the dataset
profile only—a summary of all column statistics. It uses the local compute (the current
authoring environment) and stores it on the default data store—the blob storage
account that was automatically deployed with Azure Machine Learning. Both the
compute target and storage target can be configured. It's helpful to specify the compute
target when you need to run profiling in parallel. For example with large Parquet
datasets stored on a data lake, you want to use PySpark to parallelize execution rather
than a single Python interpreter.

Here is a snippet on how to create such a local snapshot in the default data store:

Name of the current snapshot

snapshot_name = 'experiment_1'

Create a snapshot of the dataset

snapshot = dataset.create_snapshot(snapshot_name=snapshot_name)

Monitor the snapshot process

snapshot.wait_for_completion(show_output=True, status_update_frequency=10)

Return the snapshot

dataset.get_snapshot(snapshot_name)

As you can see in the preceding code, we simply pass a name for the snapshot and
create it using the current Python interpreter. You can change both the compute
environment and the storage location by passing additional arguments to the Dataset.
create_snapshot() function.

Most importantly though, if you want to take a snapshot of the data as well, you need to
set the create_data_snapshot argument to True. This will compute the data profile and
store it together with the data to the configured data store.

120 | ETL, data preparation, and feature extraction

If want to explore all snapshots from a dataset, we can list them using the following
code snippet:

Get all snapshots from a dataset

dataset.get_all_snapshots()

However, if we want to use the data from a specific snapshot (which has also saved
a data snapshot), we can simply return the pandas or PySpark dataframe from this
snapshot:

Get snapshot from a dataset

dataset_snap = dataset.get_snapshot(snapshot_name)

Get the Pandas dataframe from this snapshot

df = dataset_snap.to_pandas_dataframe()

In the preceding code, we load the pandas dataframe from the data snapshot. You can
now use this functionality in your experiments, training, and validation pipelines in
order to achieve reproducibility for all your ML processes.

The life cycle of a dataset

As you saw in the previous sections, datasets should be versioned, snapshotted, and
managed together with the experiment code and environment (libraries, scripts,
configurations, and more) that use them. The reason for this is because all data, by its
very nature, is dynamic and changes over time. The life cycle management features of
Azure Machine Learning datasets give you all the flexibility to handle these changes
over time.

The most common situation is that datasets are reorganized and changes are done in
their name, path, physical storage, and so on. Using Azure datasets, you can abstract
the path (or table name in RDBMS) and physical storage via data stores. To modify the
name of the dataset itself, you can use dataset life cycle management and deprecate the
dataset in favor of a newer dataset.

Here is a slightly different example where you want to deprecate a certain version of a
dataset in favor of a newer version:

Dataset definition to deprecate

def = dataset.get_definition(version_id=1)

Deprecate it by providing the replacement dataset definition

def.deprecate(deprecate_by_dataset_id=dataset.id,

 deprecated_by_definition_version=2)

Managing data and datasets in the cloud | 121

Deprecating a dataset will warn the consumer of the dataset that there is a newer
dataset version available that should be used instead. Another possibility is to archive a
dataset when it is no longer used:

Archive the dataset definition

def = dataset.get_definition(version_id=1)

def.archive()

To complete the life cycle, you can also reactivate the dataset definition and hence
make it visible again to your consumers:

Reactivate the dataset definition

def = dataset.get_definition(version_id=1)

def.reactivate()

Thus, you have learned how to manage your datasets over time using the life cycle
management functionality on datasets in Azure Machine Learning.

Now that we have the data defined as datasets, data consumers need a way to navigate
and explore these datasets. That's exactly what we will cover in the next section.

Exploring data registered in Azure Machine Learning

In this section, we will take a look at how to explore the data registered in Azure
Machine Learning from the perspective of the data scientist. We assume that the data
was previously loaded into Azure by a data engineer, and we now need to use the data
as a data scientist.

A typical workflow would first list the different datasets available, and then dive into
the dataset definition, profile, and samples to evaluate the data. You will learn how to
implement this workflow in the following sections.

122 | ETL, data preparation, and feature extraction

Exploring the datasets

First, as a data scientist, we want to know which datasets are available. Hence, we will
explore the datasets from Azure Machine Learning from within a Jupyter Notebook.
Please note that there are multiple ways to explore registered datasets, but for the
purpose of this book, we will stick to the tools each data scientist is most likely familiar
with and using already:

1. Let's explore the datasets from a workspace:

list all datasets from a workspace
datasets = Dataset.list(ws)

Access your dataset
dataset = Dataset.get(ws, dataset_name)

In the preceding code, we first list all the available datasets.

2. Using the standard Python filter function, you can also limit the list of datasets.
We then select a specific dataset given the dataset name and check all dataset
definitions in the following code snippet:

List all definitions for the dataset
definitions = dataset.get_definitions()

Get a specific dataset definition
data_definition = dataset.get_definition(version_id=1)

A dataset definition is a particular version of a dataset accompanied by an optional
transformation, for example, dropped or renamed columns. When working on the
dataset itself, you are always working on the latest dataset definition, hence the
one with the largest version.

3. Dataset definitions are only tracking column transformations and not the data
itself when it changes. To do so, we can take a look at all snapshots from a dataset,
and specifically look for ones that snapshot the data as well along with the profile:

Get all snapshots from a dataset
snapshots = dataset.get_all_snapshots()

Get snapshot from a dataset
data_snapshot = dataset.get_snapshot(snapshot_name)

In the preceding code, we list all snapshots and select a specific snapshot by name.

Managing data and datasets in the cloud | 123

4. When you want to access the data from the dataset, definition or snapshot—you
can do so directly by returning a pandas or PySpark dataframe, as shown in the
following code snippet:

Load dataframe from dataset
df = dataset.to_pandas_dataframe()

Load dataframe from dataset definition
df = data_definition.to_pandas_dataframe()

Load dataframe from dataset snapshot
df = data_snapshot.to_pandas_dataframe()

You can now explore datasets, data transformations as definitions, and data snapshots
in Juptyer notebooks, or by using a Python interpreter. However, when the dataset
is too big to fit in memory, you need to explore the data in a more efficient way. A
common example is when pandas runs out of memory while attempting to parse a file
that is larger than the available memory. In such a case, you need to split the file and
read multiple chunks from multiple machines (scale out) or increase the RAM on your
machine (scale up). We will go through these techniques in the next section.

Exploring the data

There are multiple ways to explore a large dataset without downloading the dataset
on your local machine. The most common techniques are displaying the top N rows,
returning a (stratified) sample of the data, or computing a dataset profile—a summary of
the distribution of all columns. In this section, we will explore all three options.

1. Let's start with the easiest, returning the top N rows of a dataset. The function
is called dataset.head() and works exactly as in pandas; it even returns a pandas
dataframe containing the top N records:

Return the first 10 records as pandas dataframe
df = dataset.head(10)

You can use the preceding function to return only a subset of records and load
these records into local memory. However, if the records are sorted, then getting
the first N values is not representative of the dataset. In order to retrieve a more
representative sample of the dataset, you can use the dataset.sample() function.
This function generates a new dataset as a sample from the original dataset, using
the sampling strategy and parameters provided.

124 | ETL, data preparation, and feature extraction

2. The general sample() function is defined as sample (sample_strategy, arguments),
where the sample_strategy parameter defines the sample, strategy (top_n,
simple_random or stratified), and where arguments is a dictionary specifying
the properties of the sampling strategy. Each sampling strategy has different
properties. The output dataset is generated through the execution of a
transformation pipeline defined by the dataset similar to a dataset definition.
Hence, the return data will be sampled using the sampling strategy and
parameters you defined. Once you return a sampled dataset, you can use the same
methods as in the original dataset:

Specify the sampling strategy top_n
sample_strategy = "top_n"
sample_props = {n: 10}

Return a sampled dataset
sampled_dataset = dataset.sample(sample_strategy, sample_props)

Get the Pandas dataframe of the dataset
sampled_dataset.to_pandas_dataframe()

In the preceding code, you can see that the sample function returns a new dataset
with a sampling transformation. Hence, we can use dataset.to_pandas_dataframe()
to convert the dataset to a pandas dataframe or PySpark dataframe.

3. You can use other sampling strategies as well to retrieve a more representative
sample from the dataset. Here is an example configuration of retrieving a
randomly sampled subset of the data:

Specify the sampling strategy simple_random
sample_strategy = "simple_random"
sample_props = {probability: 0.7, seed: 1}

Return a sampled dataset
sampled_dataset = dataset.sample(sample_strategy, sample_props)

4. If you need a subset with the same distribution as the original data, you can use
stratified subsampling, as shown in the following example. You also have to define
the columns and fractions for which the stratified split should be computed:

Specify the sampling strategy stratified
sample_strategy = "stratified"
sample_props = {
 columns: ["A", "B", "C"],
 fractions: {("A", "B"): 0.6, ("C"): 0.4]},
 seed: 1

Preprocessing and feature engineering with Azure Machine Learning DataPrep | 125

}

Return a sampled dataset
sampled_dataset = dataset.sample(sample_strategy, sample_props)

The preceding code defines the stratified sampling strategy on the columns A, B,
and C, using a fraction of 0.6 for columns A and B, and 0.4 for column C.

5. If you want to explore the data distribution without loading a sample of the data to
local memory, you could also load the data profile. The profile is a summary of the
value distribution for each column containing counts of unique values and missing
values, as well as the min, max, and median. Here is an example of loading the
dataset profile:

dataset.get_profile()

In this section, you have learned how to explore datasets in Python, how data is stored
and registered in Azure Machine Learning, as well as data distribution.

In the next section, we will look at the data preparation techniques built into Azure
Machine Learning.

Preprocessing and feature engineering with Azure Machine
Learning DataPrep
In this section, we will dive deeper into the preprocessing and feature extraction
process using Azure Machine Learning. We will first access and extract data with
different data formats from different storage systems, such as text data and CSV data
from blob storage, and tabular data from relational database systems.

Then, we will take a look at common data transformation techniques using Azure
Machine Learning DataPrep, a Python library to build transformations on top of
datasets directly in Azure Machine Learning. You will also learn common techniques of
how to filter columns, split columns through expressions, fix missing values, convert
data types, and even how to derive transformations through examples.

Finally, we will write the data back into data storage where it can be registered as a
cleaned dataset in Azure Machine Learning. By doing this you can implement fully
enterprise-grade ETL and data preparation pipelines within Azure Machine Learning.

Let's begin by parsing data that we previously moved to the cloud.

126 | ETL, data preparation, and feature extraction

Parsing different data formats

There are different ways of loading data into Azure Machine Learning using the
DataPrep SDK. The recommended way is to first upload data to blob storage in the
cloud, and convert it into a supported format. Azure DataPrep allows data to be
accessed from many different sources and to be used in various encodings.

Note

At the time of writing this book, Azure DataPrep cannot read from a versioned
dataset definition. We recommend to first extract data from the source, then load
the data into Azure Blob storage, read it using DataPrep, write the data back to
Azure Blob storage, and then create versioned datasets out of the cleaned data.

Currently, Azure DataPrep can load data from local disk, blob storage, Azure Data Lake
Storage, and SQL databases, such as Microsoft SQL Server and PostgreSQL. When
accessing data files, Azure DataPrep currently supports delimiter-separated files, such
as CSV, fixed-width files, binary formats such as Excel and Parquet, and complex nested
JSON objects.

One fantastic feature of DataPrep is that it can automatically detect the schema and
encoding of a file and infer all required settings for you using the auto_read_file (path,
include_path) method. Here is a quick example for reading a text file from local disk:

import azureml.dataprep as dprep

dataflow = dprep.auto_read_file(path='./data/filename.txt')

Like most other dataprep statements, the preceding code defines a lazy transformation
to read a file from a location on the local disk. This means that by calling this line, the
execution engine doesn't actually load any data. This behavior is quite different to what
you might be used to from pandas. However, this is the default behavior in reading and
transforming Resilient Distributed Dataframes (RDDs) in Spark.

Note

Similar to Spark, all transformation are evaluated lazily in a dataprep flow. Hence,
if you are not specifying an action, the transformations won't execute anything.

Preprocessing and feature engineering with Azure Machine Learning DataPrep | 127

In fact, the auto_read_file() method might be the method that you will find yourself
using most of the time because it works really well. Besides reading a single file, you can
also define a pattern as the path argument and read multiple files at once. Setting the
second parameter, include_path, to True will add an additional column to your dataset,
specifying the path form where the rows were loaded.

However, if you need more control over the parsing of the data and you know the file
types, then it's advisable to use file-specific functions that we are discussing in the
following sections.

Loading delimiter-separated data

Most other libraries support complex rules on how to parse CSV and other delimiter-
separated files. This is no different to Azure DataPrep providing an exhaustive list of
options for parsing delimiters, quotes, data types, and so on, and to defining standard
behavior for conversion errors (for example, dropping the row) and file headers (for
example, assuming all files have the same header).

Here is a small example of reading a CSV file from local disk and inferring the column
types of the dataset:

import azureml.dataprep as dprep

Read CSV files

dataflow = dprep.read_csv(path='./data/*.csv', infer_column_types=True)

In the preceding code, we read a CSV file from disk and infer all the column types. To do
so, the engine has to scan the first rows to extract a header type for each column in the
dataset. You can access the data types using the dataflow.dtypes object.

Note

Azure DataPrep can also extract and read CSV files in zip archives.

Parsing JSON data

Reading and parsing nested JSON data is always a bit tricky. However, using Azure
DataPrep, it is quite straightforward and similar to the CSV example from the preceding
section. A common problem of parsing JSON is how to deal with nested arrays. In big
data systems, nested arrays are usually either reduced to a single value, aggregated, or
exploded and split over multiple rows.

128 | ETL, data preparation, and feature extraction

The same can be done when reading JSON files in Azure DataPrep. With a single
property setting flatten_nested_arrays to True, all nested arrays are exploded into
additional rows in the dataset. All other columns are duplicated with the same content
of the original row, but the values of the array are split across the newly created rows:

import azureml.dataprep as dprep

Read JSON files

dataflow = dprep.read_json(path='./data/*.json')

The preceding code will read multiple JSON files and provide a lazily evaluated dataflow.

Loading binary column-store data in Parquet format

Azure DataPrep offers the functionality to load binary-encoded, column-store data,
such as Parquet format. Parquet is a popular format for storing large amounts of data
optimized for fast analytics and interactive querying. Parquet is also a great format
for internal data pipelines as you automatically solve parsing issues and performance
bottlenecks.

There are two ways to read Parquet files in Azure Machine Learning DataPrep—read_
parquet_file and read_parquet_dataset. The former will read a single or multiple files
defined via the path string similar to what we saw for CSV and JSON, whereas the latter
will parse the whole directory as a big data dataset. This is somewhat confusing, but big
data systems such as Hive and Spark usually write nested directories with Parquet files,
where partition key names and values are encoded in the directory structure. Hence,
the latter method is optimized for parsing these nested directory structures of Parquet.
We will see an example in the following code snippet:

import azureml.dataprep as dprep

Read single parquet files individually

dataflow = dprep.read_parquet_file(path='./data/filename.parquet')

Read nested folders of parquet files

dataflow = dprep.read_parquet_dataset(path='./data/warehouse/telemetry')

In the preceding code, we use both functions to lazily load data that is either file-based
or includes the entire partitioning directory structure. As a general advice, if you just
drop a bunch of Parquet files into a flat folder structure for processing, use the former;
if you are reading from a Hadoop File System (HDFS) or data generated by Hive or
Spark, use the latter.

Preprocessing and feature engineering with Azure Machine Learning DataPrep | 129

Thus, we have discussed how to load several data sources and types into Azure
Machine Learning using the DataPrep SDK. In the next section, we will showcase how to
transform the data using the same SDK.

Building a data transformation pipeline in Azure Machine Learning

Data transformations such as cleaning, preprocessing, filtering, imputing missing
values, and feature extractions are the heart of every ETL pipeline. In the following
sections, we are looking at the transform part of the ETL pipeline. It's worth mentioning
that in cloud- or big data-based data pipelines, the order is usually ELT; in other words,
extract from the source, load to the cloud, and transform in the cloud.

The azureml-dataprep package is not only useful for reading and writing data, but it
also contains loads of functionality to transform data, whether that is adding columns,
filtering out rows or columns, or imputing missing values. Before we dive into the
concepts of transformations and actions in Azure, we want to quickly take a look at the
dataflow object that was returned when reading the data.

If you have ever worked with Spark or TensorFlow 1, the concept of a dataflow might
not be new to you. In both frameworks, you have also lazily evaluated Directed Acyclic
Graphs (DAGs) of operations. In Spark, you might perform filters on an RDD, while in
TensorFlow, you might compute the loss metric of a specific point in the graph. If the
data is not displayed or the session is not executed, then the lazy transformations are
not executed either.

Note that a dataflow is very similar to an RDD in Spark, as it is a DAG of lazy operations
on a distributed dataset. Let's get started and explore different transformations
provided in the Azure dataprep SDK.

Generating features through expression

First, we are going to look into the addition of features to a dataset. This is a common
task when you need to extract information from a column, transform that information,
and store it in a new column. The Azure dataprep SDK provides a range of expressions
that allow you to extract data from existing columns and store it in new columns. The
following expressions are available:

• substring: To compute the substring of all values of a column

• length: To compute the length of all values of a column

• to_upper: To convert all values of a column to uppercase

• to_lower: To convert all values of a column to lowercase

• RegEx.extract_record: To extract the capturing group from a regex matcher

• create_datetime: To create a date time object from the year, month, and day columns

130 | ETL, data preparation, and feature extraction

• Algebraic operators

• Addition +

• Subtraction –

• Division /

• Multiplication *

• Integer division //

• Modulo %

• Power **

Let's look at the substring method as an example for creating new columns through
expressions.

The substring(start, length) expression can be used to extract a prefix from a column
into a new column. You can also use substring(start) without specifying the length
in the expression. If you pass the substring expression to the expression argument, it
creates a new calculated column that executes the expression specified on every record
of the column.

Let's look at an example. When you are given an International Bank Account Number
(IBAN) field, you might want to split this code into its country code, bank identifier,
branch, and account IDs. This can be achieved using the substring expression. In an
example IBAN, IE29 AIBK 9311 5212 3456 78, we want to extract the first two characters
as country code in order to incorporate additional country-specific information in the
dataset:

substr_exp = dprep.col('iban').substring(0, 2)

country_code = dflow.add_column(expression=substr_exp,

 new_column_name='country_code', prior_column='iban',

 expression=substr_exp)

As you can see in the preceding code, we add the newly created column to the dataflow
using the add_column() method. This method requires the expression, the name for the
new column, new_column_name, and the name of the column, prior_column, after which
the calculated column should be added as arguments. Let's continue with some data
type conversions.

Preprocessing and feature engineering with Azure Machine Learning DataPrep | 131

Data type conversions

When transforming data, you will often be confronted with the need to parse data into
different data types. Therefore, the dataflow object contains the following methods to
transform the data types of columns:

• to_bool()

• to_datetime()

• to_long()

• to_number()

• to_string()

The to_long() and to_string() functions don't take any additional parameters other
than an array of column identifiers to be transformed. Let's look at the other functions.

The to_bool() method allows us to transform complex data structures into Boolean
values. Similar to all the other functions, its first argument is a list of columns to be
applied. The true_values and false_values arguments let us define a list of custom
values that should be converted into true or false. Additionally, we can also specify
what should happen when a value was not found in either of the two lists, using
MismatchAsOption.ASERROR, MismatchAsOption.ASTRUE, or MismatchAsOption.ASFALSE. Let's
take a look at an example:

from azureml.dataprep import MismatchAsOption

dflow = dflow.to_bool(['Survived'],

 true_values=['yes'], false_values=['no'],

mismatch_as=MismatchAsOption.ASFALSE)

In the preceding code, we convert the survived column of the string type into a Boolean
data type. We define that the value yes should be converted to true, and the value no
should be converted to false. Finally, we want any mismatches parsed as false values.

Next, we will convert strings into floating point numbers using the to_number()
method. Again, we use the column names of the columns that will be transformed as
a first argument. Additionally, we can specify the decimal_point argument to specify
whether the source data uses a dot, DecimalMark.DOT, or a comma, DecimalMark.COMMA, to
represent the decimal point:

from azureml.dataprep import DecimalMark

dflow = dflow.to_number(['Latitude', 'Longitude'],

decimal_point=DecimalMark.COMMA)

132 | ETL, data preparation, and feature extraction

In the preceding code, we are transforming the two columns, Latitude and Longitude,
from strings into floating-point numeric data types. We also specify the comma as a
decimal point.

Let's take a look at the last conversion function, to_datetime(), which parses a
string into a datetime format. The first argument is again an array of column names.
Additionally, we can add a list of various datatime formats using the date_time_formats
argument to be used for a conversion. This is very useful when your data source
contains multiple different datetime string representations that should all be parsed at
once. Another argument, date_constant, lets us specify a constant date as a string that
will be appended to all values that only contain a time but not a date value:

dflow = dflow.to_datetime('Date', date_time_formats=['%d.%m.%Y %H:%M'])

The preceding code transforms the Date column from a string into a datatype format.
In the following section, we will learn how to perform a similar transformation using
examples.

Deriving columns by example

Next, we will look into a nifty way of deriving new columns through examples in Azure
dataprep SDK. There are two methods that we can use to derive new columns:

• split_column_by_example: This splits columns into multiple columns using the
examples provided.

• derive_column_by_example: This transforms columns into a new column using the
examples provided.

These methods are extremely useful when you want to perform a complicated
transformation or split that is much easier to define by a set of examples than through a
set of rules. This is often the case when working with messy data or data from different
sources. In our example, we will look into the derive_column_by_example method, but
both methods work in the same way:

1. Create a builder object.

2. Add examples to the builder or modify a list of suggested examples.

3. Preview the transformation.

4. Apply the transformer.

Preprocessing and feature engineering with Azure Machine Learning DataPrep | 133

Let's look at these steps in action. First, we create a builder directly from the dflow
object using dflow.builders.derive_column_by_example. We also need to specify the
source columns and the name for the new derived column using the source_columns and
new_column_name arguments. In the following code snippet, we use the Name column of
the Titanic dataset to derive the title of the passenger:

builder = dflow.builders.derive_column_by_example(

 source_columns=['Name'], new_column_name='Title')

Please see Figure 4.1 which shows how the data in the Name column and the desired
transformation to Title looks like:

Figure 4.1: Collating the names and titles of passengers

Now, we can add examples to the transformation using the add_example method. We
need to specify the source data and the example transformation as arguments. Finally,
we can preview the transformations on the first 10 records:

df = dflow.head()

builder.add_example(source_data=df.iloc[0], example_value='Mr')

builder.add_example(source_data=df.iloc[1], example_value='Mrs')

builder.add_example(source_data=df.iloc[2], example_value='Miss')

builder.add_example(source_data=df.iloc[3], example_value='Master')

builder.preview(count=10)

In the preceding example, we use the df.iloc[index] notation to specify the index
of the example record for a specified transformation, very similar to the notation in
Pandas. We then preview the first 10 records of the transformation. We can also use the
generate_suggested_examples, delete_example, or list_examples methods to modify the
list of example transformations.

Name Title
Braund, Mr. Owen Harris Mr

Cumings, Mrs. John Bradley (Florence Briggs Thayer) Mrs

Heikkinen, Miss. Laina Miss

Palsson, Master. Gosta Leonard Master

134 | ETL, data preparation, and feature extraction

Once we are happy with the transformation, we can apply the transformation and
generate a new dataflow using the to_dataflow method:

dflow = builder.to_dataflow()

Imputing missing values

Next, we are looking into another important preprocessing technique: imputing missing
values. In general, we can differentiate between two types of replacing missing values:
constant replacement or learned replacement. Hence, we can either replace missing
values in the dataset with a constant value or learn how to impute missing values based
on the training data.

When you choose to replace values in your dataflow using constant replacements, you
can use the following transformations:

• replace: To replace all values that match a specified value

• replace_na: To replace all custom-specified NaN values with nulls

• fill_nulls: To fill all nulls with a specified value

• error: To replace custom-specified values with an error code and message

• fill_errors: To fill all errors with a specified value

Often, constant replacement is not good enough. In these cases, you have to choose the
imputation builder. The imputation builder works similar to the previously discussed
derive-by-example builder. We have to define the following steps to define, learn, and
impute missing values in the dataset:

1. Define column imputation arguments

2. Create a column imputation builder

3. Learn the imputation

4. Transform the dataflow

We start with the imputation arguments using the ImputeColumnArguments object.
It takes the target column, column_id, as a first argument and lets you define either
a constant value using custom_impute_value or a computed value using the impute_
function argument. First, we define a simple static imputation and set the embarkation
port in the Titanic dataset to 'S' (Southampton) for all null or empty values in the
Embarked column – representing the port of embarkation for each passenger:

impute_embarked = dprep.ImputeColumnArguments(column_id='Embarked',

 custom_impute_value=S)

Preprocessing and feature engineering with Azure Machine Learning DataPrep | 135

The preceding code is exactly the same as using fill_nulls. However, we can also
create more complex imputation arguments. In the following code, we use impute_
function=ReplaceValueFunction.MEAN to impute empty values in the Age column with
the training set mean of the same column. We do the same for the Cabin column.
Using the StringMissingReplacementOption option, we can define when the imputation
should be applied, either for EMPTY, NOTHING, NULLS, or NULLSANDEMPTY. Let's define both
imputations:

from azureml.dataprep import StringMissingReplacementOption

impute_cabin = dprep.ImputeColumnArguments(column_id='Cabin',

 impute_function=dprep.ReplaceValueFunction.MIN,

 string_missing_option=StringMissingReplacementOption.NULLSANDEMPTY)

impute_age = dprep.ImputeColumnArguments(column_id='Age',

 impute_function=dprep.ReplaceValueFunction.MEAN,

 string_missing_option=StringMissingReplacementOption.NULLSANDEMPTY)

As a next step, we create the imputation builder using the previously defined
imputation arguments. What is great about this function is that it allows us to also
define grouping columns that are used to compute the imputation function. In the
following example, we define the Sex and Pclass columns as grouping columns and,
hence, the aggregations for age and cabin are computed per sex and passenger class.
This is much more accurate than just replacing the values with the mean of the entire
training set:

impute_builder = dflow.builders.impute_missing_values(

 impute_columns=[impute_embarked, impute_cabin, impute_age],

 group_by_columns=['Sex', 'Pclass'])

Once the impute builder is constructed, we need to train it. This will compute the
grouped imputation functions on the training data and store the values in an internal
lookup dictionary:

impute_builder.learn()

Finally, we can apply the trained imputation function to the dataflow by calling the to_
dataflow method:

dflow_imputed = impute_builder.to_dataflow()

Next, we will take a look into how we can encode categorical variables to
numeric values.

136 | ETL, data preparation, and feature extraction

Label and one-hot encoding

Using the Azure dataprep SDK, you can also encode categorical variables into numeric
values. In this chapter, we will just look at transforming categorical values using label
and one-hot encoding, but in the next chapter, Chapter 6, Advanced feature extraction
with NLP, we will see many more advanced encoding techniques.

In label encoding, we replace all categorical values of a column with an integer label. If
we apply the label encoder to the Sex column, the male value will be encoded as 0 and
the female value as 1. Let's look at the code example:

dflow = dflow.label_encode(

 source_column='Sex', new_column_name='Sex_Label')

Label encoding is great for high cardinal categorical or ordinal values. If your
categorical columns contain a low amount of unique values and you are looking for an
orthogonal embedding, you can choose one-hot encoding. Let's replace the values of
the Embarked column with the orthogonal vectors [1,0,0], [0,1,0], and [0,0,1] for the
values S, C, and Q using the following example:

dflow = dflow.one_hot_encode(

 source_column='Embarked', prefix='Embarked_')

In the preceding code, we create new columns prefixed with the Embarked_ prefix; in
total, as many columns as there are unique values in Embarked.

If your data contains many different but similar values, you can also group those
similar values together using fuzzy grouping. In the Azure dataprep SDK, this operation
is very simple using the fuzzy_group_column method. You need to define the source
and destination columns, source_column and new_column_name, as well as the similarity
threshold and column name for the similarity score, if required.

In the following example, we group all similar values from the Ticket column together
using this fuzzy grouping approach:

dflow_grouped = dflow.fuzzy_group_column(source_column='Ticket',

 new_column_name='Ticket_Groups',

 similarity_threshold=0.75,

 similarity_score_column_name='similarity_score')

The preceding code will group similar values together and reduces the number of
distinct categorical values in the Ticket column. Next, we continue with feature
transformations for numeric values.

Preprocessing and feature engineering with Azure Machine Learning DataPrep | 137

Transformations and scaling

It's often necessary to transform numeric data during the data preparation step. Instead
of having an exact price for each Fare in our dataset, we may prefer a categorization
of the fares into groups. To do so, we can use the quantile transformation, quantile_
transform, which will group the source column into quantiles_count intervals.

Let's look at the code in action:

dflow = dflow.quantile_transform(source_column='Fare',

new_column='Fare_Normal',

 quantiles_count=5, output_distribution="Normal")

In the preceding code, we split the fares into five quantiles using a normal distribution.
If we preferred a uniform split, we could also specify a Uniform distribution.

If we want to scale the range of a numeric column to a specific range, for example, for
normalization, we can do so using the min_max_scale function. The function takes two
additional arguments, range_min and range_max, to define the target range on which the
source column should be scaled. Here is an example code for this transformation:

dflow_scaled = dflow.min_max_scale(column='Parch',

 range_min=0, range_max=1)

Once we have transformed the source columns into additional feature columns, we
often need to remove the old columns from the dataflow. Now, let's look into some row
and column filtering techniques.

Filtering columns and rows

The dataprep SDK also lets you filter columns and rows from your dataset using the
following functions:

• drop_columns: To drop columns from a dataflow

• filter: To filter rows from a dataflow

138 | ETL, data preparation, and feature extraction

While the drop_columns function only takes a list of column names as arguments, the
filter function is a bit more complex and can use expressions to filter rows. Filter
expressions can either be created through logical operators on the dataflow columns or
by using the following filter functions:

• starts_with

• ends_with

• contains is_error

• is_null distinct

• distinct_rows

The resulting expression will evaluate each record when the data is processed and filter
out data where the filter function returns false. Here are two examples of filtering the
rows on a dataflow based on logical operators:

dflow.filter(dflow['a'] > dflow['b'])

dflow.filter(dprep.col('a') > 0)

Here are two examples involving the use of a filter function:

dflow.filter(dflow['a'].starts_with('prefix'))

dflow.filter(dflow['a'].ends_with('postfix'))

Often, the preceding functions are not enough when you need to create complex filters,
such as a combination of two filter functions. To do so, Azure DataPrep provides the
Boolean operators f_not, f_and, and f_or.

The following example uses a filter function to drop all non-null values from the
dataflow:

dflow = dflow.filter(dprep.f_not(dprep.col('Survived').is_null()))

Using these filter expressions, as well as logical and Boolean operators, you can
construct complex nested filter expressions. If this is not enough, you can also write
custom transformations and filter functions. Let's now take a look how to write the
output of a dataflow back to your blob storage.

Preprocessing and feature engineering with Azure Machine Learning DataPrep | 139

Writing the processed data back to a dataset

In this last section, we will teach you how to write data back into a dataset using a
dataflow and the DataPrep Python SDK. This is extremely useful, as this will make
your data pipeline complete. Once the dataset is updated and has a new version and
snapshot, it is ready to be used by data consumers for further analysis and ML.

First, we are going to write data to a delimited file—in this case, a .csv file—and use the
write_to_csv function. This function can be used as shown in the following example:

from azureml.dataprep import LocalFileOutput

Write dataflow to CSV

dataflow.write_to_csv(directory_path=LocalFileOutput('./outputs')).run_local()

The first parameter is the directory_path, which is the path to a directory in which we
will store the output files. So, in the case of the Spark example, this needs to be empty.

The separator parameter defines the CSV column separator to use. The na argument is
a string to use for null values, and error is a string to use for error values (in this case,
we use the ERROR string for errors and NA for NaN values). The write_to_csv method
returns the modified dataflow where the write operation is just another lazy step in the
DAG. Hence, every execution of the returned dataflow will perform the write operation
again:

Create a new data flow using 'write_to_csv'

write_t =

t.write_to_csv(directory_path=dprep.LocalFileOutput('./test_out/'))

Run the current data flow using the local execution runtime

to begin the write operation

write_t.run_local()

written_files = dprep.read_csv('./test_out/part-*')

written_files.head(5)

In the preceding code example, we write the CSV file to disk and load it back as a CSV
file using Azure DataPrep. This could lead to errors while parsing the numeric columns,
due to the numbers being parsed from strings containing ERROR and NA values.

140 | ETL, data preparation, and feature extraction

CSV is useful only when you need to manually inspect the data. For most other cases, a
binary-encoded format with an embedded data schema is a lot more efficient and will
remove tons of potential parsing issues with CSV and text files in general. Hence, we
recommend that you store your data in a Parquet format, a high-performance columnar
data storage format with adapters and libraries in many languages.

Writing a dataflow to a Parquet file is quite similar to the write_to_csv() function. Let's
look at a typesafe example of exporting a dataset using the Parquet writer:

dataflow.write_to_parquet(file_path='./outputs/train.parquet',

single_file=True).run_local()

In the preceding code, we write the data transformed by the dataflow back using
Parquet format. We can specify the output destination using either the file_path
or directory_path arguments. To output a single file, we additionally need to set the
single_file argument to true.

Due to parallelization in the columnar data format, Parquet writes are often executed
in parallel to create the output for a single dataset. This parallel execution will lead to
multiple generated files for the dataset by default. Using the single_file parameter, you
can force the creation of a single file while reducing the write throughput.

Dataflows, dataprep, datasets, and data stores are extremely useful concepts for
managing your data and data pipelines, from hundreds of records to hundreds of
thousands of files per dataset. Therefore, they are indispensable tools for building high-
quality, end-to-end data pipelines in the cloud.

Summary
In this chapter, you have learned how to build enterprise-grade ETL pipelines and data
transformations in Azure Machine Learning, as well as how to manage datasets.

You have learned how to load data into the cloud using blob storage and how to extract
data from various other data formats. If you model your data in abstract data stores
and datasets, then your users don't have to know where the data is located, how it is
encoded, or what is the correct protocol and permission to access it. This is an essential
part of an ETL pipeline. Another great way is to see your dataset definitions as contracts
about what your users can expect from the data, very similar to an API. Therefore, it
should make sense to follow a specific life cycle of creating datasets, updating and
versioning them, before deprecating and archiving them if no longer used.

Summary | 141

Using the Azure DataPrep SDK, you acquired the skills to write scalable data platforms
using dataflows. We looked into how to create columns through simple transformations,
how to impute missing values through grouped aggregations—such as mean encoding—
and even generated a string parser using derived expressions through examples. You
learned how to group categorical values together using fuzzy grouping and transform
them using label and one-hot encoding.

Finally, we looked into writing the data back to a data store using Parquet, an efficient
binary column-store format. Once the data is stored, you can again register it as
dataset, and then version and snapshot it. This will allow your data scientists to access,
explore, and use the data with the tools they are already familiar with.

In the next chapter, we will look into separating the data transformation script into
individual steps using Azure Machine Learning pipelines.

In the previous chapters, we learned about many extract, transform, and load (ETL)
preprocessing and feature-engineering approaches within the Azure Machine Learning
using Dataset, Datastore, and DataPrep. In this chapter, you will learn how to use these
transformation techniques to build reusable machine learning (ML) pipelines.

First, you will learn about the benefits of splitting your code into individual steps and
wrapping them into a pipeline. Not only can you make your code blocks reusable
through modularization and parameters, but you can also control the compute targets
for individual steps. This helps to optimally scale your computations, save costs, and
improve performance at the same time. Lastly, you can parameterize and trigger your
pipelines through an HTTP endpoint or through a recurring or reactive schedule.

After that, we'll build a complex Azure Machine Learning pipeline in a couple of steps.
We start with a simple pipeline; add data inputs, outputs, and connections between
steps; and finally deploy the pipeline as a web service. You will also learn about
advanced scheduling based on frequency and changing data, as well as exploring
parallelizing pipeline steps for large volumes of data.

Azure Machine
Learning pipelines

5

144 | Azure Machine Learning pipelines

In the last part of the chapter, you will learn how to integrate Azure Machine Learning
pipelines into other Azure services, such as Azure Machine Learning designer, Azure
Data Factory, and Azure DevOps. This will help you to understand the commonalities
and differences between the different pipeline and workflow services and how you can
trigger ML pipelines.

In this chapter, we will cover the following topics:

• Benefits of pipelines for ML workflows

• Building and publishing an ML pipeline

• Integrating pipelines with other Azure services

Let's begin with a discussion of the benefits of using ML pipelines in your Azure
projects.

Benefits of pipelines for ML workflows
Separating your workflow into reusable configurable steps and combining these steps
to form an end-to-end pipeline provides many benefits for implementing end-to-end
ML processes. Multiple teams can own and iterate on individual steps to improve the
pipeline over time, while others can easily integrate each version of the pipeline into
their current setup.

The pipeline itself doesn't only split code from execution—it also splits the execution
from the orchestration. Hence, you can configure individual compute targets that can
be used to optimize your execution and provide parallel execution, during which you
don't have to touch the ML code.

We will take a quick look into Azure Machine Learning pipelines and why they should
be your tool of choice when implementing ML workflows in Azure. In the following
section, Building and publishing an ML pipeline, we will dive a lot deeper and explore
the individual features by building such a pipeline.

Benefits of pipelines for ML workflows | 145

Why build pipelines?

As a single developer doing mostly experimentation and working simultaneously
on data, infrastructure, and modeling, pipelines don't add a ton of benefits to the
developer's workflow. However, as soon as you perform enterprise-grade development
across multiple teams that iterate on different parts of an ML system, you will greatly
benefit from splitting your code into a pipeline of individual execution steps.

This modularization will give you great flexibility, and multiple teams will be able
to collaborate efficiently. Teams can integrate your models and pipelines while you
are iterating and building new versions of your pipeline at the same time. By using
versioned pipelines and pipeline parameters, you can control how your data or model
service pipeline should be called and ensure auditing and reproducibility.

Another important benefit of using workflows instead of running everything inside a
single file is execution speed and cost improvements. Instead of running a single script
on the same compute instance, you can run and scale steps individually on different
compute targets. This gives you greater control over potential cost savings and better
optimization for performance, and you only ever have to retry the parts of the pipeline
that failed rather than the whole pipeline.

Through the scheduling of pipelines, you can make sure that all your pipeline runs
are executed without any manual intervention on your part. You simply define
triggers, such as the existence of new training data, that should execute your pipeline.
Decoupling your code execution from triggering the execution gives you a ton of
benefits, such as easy integration into many other services.

Finally, the modularity of your code allows for great reusability. By splitting your script
into functional steps such as cleaning, preprocessing, feature engineering, training, and
hyper-parameter tuning, you can version and reuse these steps for other projects as
well.

Therefore, as soon as you want to benefit from one of these advantages, you can start
organizing your code into pipelines so that they can be deployed, scheduled, versioned,
scaled, and reused effectively. Let's find out how you can achieve this in Azure Machine
Learning.

146 | Azure Machine Learning pipelines

What are Azure Machine Learning pipelines?

Azure Machine Learning pipelines are workflows of executable steps in Azure Machine
Learning that compose a complete ML workflow. You can combine data imports, data
transformations, feature engineering, model training, and optimization, as well as
deployment, as your pipeline steps.

Pipelines are resources in your Azure Machine Learning workspace that you can create,
manage, version, trigger, and deploy. They integrate with all other Azure Machine
Learning workspace resources, such as Dataset and Datastore for loading data, compute
instances, models, and endpoints. Each pipeline run is executed as an experiment
on your Azure Machine Learning workspace and gives you the same benefits that we
covered in the previous chapters, such as tracking files, logs, models, artifacts, images,
and more while running on flexible compute clusters.

Azure Machine Learning pipelines should be your first choice when implementing
flexible and reusable ML workflows. By using pipelines, you can modularize your code
into blocks of functionality, and you can version and share those blocks with other
projects. This makes it easy to collaborate with other teams on complex end-to-end ML
workflows.

Another great integration of Azure Machine Learning pipelines is the integration with
endpoints and triggers in your workspace. With a single line of code, you can publish
a pipeline as a web service or web service endpoint and use this endpoint to configure
and trigger the pipeline from anywhere. This opens up the door for integrating Azure
Machine Learning pipelines with many other Azure and third-party services.

However, if you need a more complex trigger, such as continuous scheduling or reactive
triggering based on changes in the source data, you can easily configure this as well.
The added benefit of using pipelines is that all orchestration functionality is completely
decoupled from your training code.

As you can see, you get a lot of benefits by using Azure Machine Learning pipelines for
your ML workflows. However, it's worth noting that this functionality does come with
some extra overhead. Let's start by building our first pipeline.

Building and publishing an ML pipeline | 147

Building and publishing an ML pipeline
Let's go ahead and use our knowledge from the previous chapters to build a pipeline
for data processing. We will use the Azure Machine Learning Python SDK to define all
pipeline steps as Python code so the pipeline can be easily managed, reviewed, and
checked into version control as an authoring script.

We will define a pipeline as a linear sequence of steps. Each step will have an input and
output defined as pipeline data sinks and sources. Each step will be associated with a
compute target that defines both the execution environment and the compute resource
for execution. We will set up an execution environment as a Docker container with all
the required Python libraries and run the pipeline steps on a training cluster in Azure
Machine Learning.

A pipeline runs as an experiment in your Azure Machine Learning workspace. We can
either submit the pipeline as part of the authoring script, deploy it as web service and
trigger it through a webhook, schedule it as a published pipeline similar to a cron job, or
trigger it from a partner service such as Logic Apps.

In many cases, running a linear sequential pipeline is good enough. However, when the
amount of data increases and the pipeline steps become slower and slower, we need to
find a way of speeding up these large computations. A common solution for speeding up
data transformations, model training, and scoring is parallelization. Hence, we will add a
parallel execution step to our data transformation pipeline.

As we learned in the first section of this chapter, two of the main benefits of decoupling
ML workflows into pipelines are modularity and reusability. By splitting a workflow into
individual steps, we build the foundation for reusable computational blocks for common
ML tasks, be it data analysis through visualizations and feature importance, feature
engineering through natural language processing (NLP) and third-party data, or simply
the scoring of common ML tasks such as automatic image tagging through object
detection.

In Azure Machine Learning pipelines, we can use modules to create reusable
computational steps from a pipeline. A module is a management layer on top of a
pipeline step that allows you to version, deploy, load, and reuse pipeline steps with ease.
The concept is very similar to Azure Machine Learning dataset definitions, which are
used to version and manage data.

148 | Azure Machine Learning pipelines

For any enterprise-grade ML workflow, the use of pipelines is essential. Not only does
it help you decouple, scale, trigger, and reuse individual computational steps, but it also
provides auditability and monitorability to your end-to-end workflow. Furthermore,
splitting computational blocks into pipeline steps will set you up for a successful
transition to MLOps—a continuous integration/continuous deployment (CI/CD)
process for ML projects.

Let's get started and implement our first Azure Machine Learning pipeline.

Creating a simple pipeline

An Azure Machine Learning pipeline is a sequence of individual computational steps
that can be executed in parallel or in series. Depending on the type of computation, you
can schedule jobs on different compute targets, such as Azure Machine Learning or
Azure Batch, or perform automated ML or HyperDrive experiments. Depending on the
execution type, you may need to provide additional configuration.

Let's start with a simple pipeline that consists only of a single step. First, we need
to define the type of execution for our pipeline step. While PipelineStep is the base
class for any execution we can run in the pipeline, we need to choose one of the step
implementations. The following steps are available at the time of writing:

• PythonScriptStep: Runs a Python script

• AdlaStep: Runs a U-SQL script using Azure Data Lake Analytics

• DataTransferStep: Transfers data between Azure storage accounts

• DatabricksStep: Runs a Databricks notebook

• AzureBatchStep: Runs a script on Azure Batch

• EstimatorStep: Runs an estimator

• MpiStep: Runs a message passing interface (MPI) job

• HyperDriveStep: Runs a HyperDrive experiment

• AutoMLStep: Runs an automated ML experiment

Building and publishing an ML pipeline | 149

For our simple example, we want to run a single Python script wrapped into an
estimator object in our pipeline, so we will choose EstimatorStep from the preceding
list. We reuse the same script and estimator that we first saw in Chapter 2, Choosing a
machine learning service in Azure. Let's make the example even simpler and start with a
Python script that doesn't need any data input or output, or any configuration. We will
add these separately in the following steps:

1. The pipeline steps are all attached to an Azure Machine Learning workspace.
Hence, we start by loading the workspace configuration:

from azureml.core import Workspace

ws = Workspace.from_config()

2. Next, we need a compute target to execute our pipeline step on. Let's create an
auto-scaling Azure Machine Learning training cluster as a compute target similar
to what we created in Chapter 2, Choosing a machine learning service in Azure:

from azureml.core.compute import ComputeTarget, AmlCompute

compute_config = AmlCompute.provisioning_configuration(
 vm_size='STANDARD_D2_V2', max_nodes=4)
cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, compute_config)
cpu_cluster.wait_for_completion(show_output=True)

3. We can now define our estimator, which simply provides all the required
configuration for a target ML framework:

from azureml.train.estimator import Estimator

estimator = Estimator(entry_script='train.py',
 compute_target=cpu_cluster, conda_packages=['tensorflow'])

4. Next, we configure the estimator step. If you recall, in Chapter 2, Choosing a
machine learning service in Azure, we simply submitted the estimator as an
experiment to the Azure Machine Learning workspace. However, now we will first
wrap the single estimator into a pipeline step and instead submit the pipeline as
an experiment. While this seems counterintuitive at first, we will see how we can
then parametrize the pipeline and add more steps to it. But let's start with the first
step, EstimatorStep:

from azureml.pipeline.steps import EstimatorStep

step = EstimatorStep(name="CNN_Train",
 estimator=estimator, compute_target=cpu_cluster)

150 | Azure Machine Learning pipelines

5. The preceding step configuration looks very simple. As you can see, we are
merely wrapping the estimator into an estimator step without any additional
configuration. Don't worry, we will add some more configuration in the next
section. But before we do this, we want to define and execute a pipeline:

from azureml.pipeline.core import Pipeline

pipeline = Pipeline(ws, steps=[step])

6. As you can see, the pipeline is defined simply through a series of pipeline steps
and is linked to a workspace. In our example, we only define a single execution
step, which makes the pipeline really simple. Let's also check whether we made
any mistakes in configuring our pipeline through the built-in pipeline validation
functionality:

pipeline.validate()

7. All good—the pipeline is validated and ready to go. Let's submit it as an experiment
to the Azure Machine Learning workspace:

from azureml.core import Experiment

exp = Experiment(ws, "simple-pipeline")
run = exp.submit(pipeline)
run.wait_for_completion(show_output=True)

Congratulations, you just ran your first very simple Azure Machine Learning pipeline.

Note

You can find many complete and up-to-date examples of using Azure Machine
Learning pipelines in the official Azure repository: https://github.com/Azure/
MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-
pipelines/

While this simple pipeline doesn't add a ton of benefits to directly submitting the
estimator as an experiment, we can now add additional steps to the pipeline and
configure data inputs and outputs. Let's take a look!

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/

Building and publishing an ML pipeline | 151

Connecting data inputs and outputs between steps

Pipeline steps are the computational blocks of a workflow. In order to control the
sequence of steps and thus the flow of data, we need to define the inputs and outputs
for the pipeline and wire up the data inputs and outputs of individual steps. The data
flow between the individual computational blocks will ultimately define the execution
order for the blocks, and hence will turn a sequence of steps into a directed acyclic
execution graph.

In most cases, a pipeline needs external inputs and connections between the individual
blocks as well as persisted outputs. In Azure Machine Learning pipelines, we will use
the following building blocks to configure this data flow:

• Pre-persisted pipeline inputs: Dataset

• Data between pipeline steps: PipelineData

• Persisting pipeline outputs: PipelineData.as_dataset()

In this section, we will look at all three types of data inputs and outputs. First, we'll take
a look at how we pass data as input into a pipeline.

Inputting data to pipeline steps with Dataset

Let's start with adding a data input to the first step in a pipeline. To do so—or to pass
any pre-persisted data to a pipeline step—we use a Dataset object, which we first
learned about in Chapter 4, ETL, data preparation, and feature extraction. In Azure
Machine Learning, Dataset is an abstract reference to data stored in a specified path
with a specified encoding on a specified system. The storage system itself is abstracted
as a Datastore object, a reference to the physical system with information about
location, protocol, and access permissions.

If you recall from the previous chapters, we can access a dataset that was previously
registered in our Azure Machine Learning workspace simply by referencing it by name:

from azureml.core.dataset import Dataset

train_dataset = Dataset.get(ws, 'training.data.raw')

152 | Azure Machine Learning pipelines

The preceding code is very convenient when your data is initially organized and
registered as datasets. As pipeline developers, we don't need to know the underlying
data format (for example, CSV, ZIP, Parquet, JSON, and so on) or on which Azure Blob
storage or Azure SQL Database instance the data is stored.

However, when passing new data into an Azure Machine Learning pipeline, we often
don't have the data registered as datasets. In these cases, we can create a new dataset
reference. In the following example, we convert a CSV file from our custom datastore,
mldemodatastore, into a Dataset object:

from azureml.core.datastore import Datastore

use default datastore 'ws.get_default_datastore()'

or load a custom registered data store

datastore = Datastore.get(ws, 'mldemodatastore')

iris_dataset = Dataset.Tabular.from_delimited_files(

 datastore.path('iris.csv'))

The preceding code is probably what you will most likely use in your enterprise
environment. It's quite common to have an ETL pipeline loading data into a blob storage
location, and then have an ML pipeline pick up the data from there to extract features,
re-train a model, or score a pre-trained model. Hence, using this technique, you can
reference arbitrary data from your workspace and pass it to your pipelines as input.

Another possibility is accessing files that are hosted on a publicly available system. In
this case, we don't need the datastore reference but solely the path to the desired files.
Here is an example of creating a dataset from such data:

web_paths = [

 'https://.../mnist/train-images-idx3-ubyte.gz',

 'https://.../mnist/train-labels-idx1-ubyte.gz']

mnist_dataset = Dataset.File.from_files(path=web_paths)

As you can see, there are multiple ways to transform files and tabular data into Dataset
objects. While this seems like a bit of complicated extra work instead of passing
absolute paths to your pipelines directly, you will get a ton of benefits from following
this convention. Most importantly, all compute instances in your Azure Machine
Learning workspace will be able to access, read, and parse the data without any
additional configuration. Imagine you are planning to manage local development and
experimentation instances, and auto-scale training clusters and Kubernetes-based
inferencing clusters, while also having to manually set up access control and more for
all your datastores and systems—how painful.

Building and publishing an ML pipeline | 153

Once we have obtained a reference to a Dataset object, we can pass the dataset to the
pipeline step as input. There are two things to consider when passing a dataset to the
computational step:

1. The name of the dataset to later reference it in the script—as_named_input()

2. The access type—as_download() or as_mount()

Let's see how this is done using the estimator step from the previous section:

step = EstimatorStep(name="CNN_Train",

 input=[mnist_dataset.as_named_input('mnist').as_mount()],

 estimator=estimator, compute_target=cpu_cluster)

As you can see in the preceding example, we can pass multiple datasets to the pipeline
step as inputs. Using a specific name for this dataset will help us to differentiate
between multiple inputs in the training script of this step. The access type tells the
compute instance to either mount the datastore location (great for large files) or
download the file to the local disk (great for small files).

Finally, let's look at the script file of this estimator that needs to load the data that was
passed in the pipeline step configuration. To do so, we need to extend our script to
retrieve the input datasets from the current RunContext. Here is an example of updating
the estimator's training script, train.py, to access the dataset from the pipeline step
configuration:

in the training script 'train.py'

mnist_dataset = Run.get_context().input_datasets['mnist']

As you can see in the preceding snippet, your training file doesn't need to know
anything about the path, location, or encoding of the data. However, the problem with
this approach is that we can now run this estimator only as part of a pipeline step
and cannot schedule it as a simple experiment, as we can't define data inputs in the
same way. Therefore, there is a second way to pass datasets to pipeline steps through
command-line arguments. Here is an example using arguments instead of the input
definition:

step = EstimatorStep(name="CNN_Train", arguments=[

 '—train-data', mnist_dataset.as_named_input('mnist').as_mount()],

 estimator=estimator, compute_target=cpu_cluster)

154 | Azure Machine Learning pipelines

Finally, in order to read the dataset from a command-line argument, we need to
implement a small argument parser and parse the path from the dataset in the training
script. The following example shows how this can be achieved:

in the training script 'train.py'

parser = argparse.ArgumentParser()

parser.add_argument('--train-data', type=str, dest='train_data')

args = parser.parse_args()

mnist_dataset = Dataset.File.from_files(args.train_data)

As you can see in the preceding snippet, we now only pass a reference to the dataset
path to the training script and have to retrieve the dataset using this path. While this
involves writing a bit more code than the previous example, this version lets you reuse
the training script for manual execution, simple experiments, or HyperDrive runs
without modification.

This is a great way to decouple a block of functionality from its input and helps you
to build reusable blocks. We will see in the following section, Reusing pipeline steps
through modularization, how we can turn these reusable blocks into shared modules.

Next, let's find out how to set up a data flow between individual pipeline steps.

Passing data between steps with PipelineData

When we define inputs to a pipeline step, we also often want to configure the outputs
for the computations. By passing in input and output definitions, we completely
separate the pipeline step from predefined data storage and avoid having to move data
around as part of the computation step.

While pre-persisted inputs are defined as Dataset objects, data connections (inputs and
outputs) between pipeline steps are defined using PipelineData objects. Let's look at
an example of a PipelineData object used as the output of one pipeline step and as the
input for another step:

data_input = Dataset.get_by_name(ws, 'mnist_data')

data_output = PipelineData('mnist_results', datastore=datastore)

step1 = PythonScriptStep(name="Score", script_name="score.py",

 inputs=[data_input], outputs=[data_output])

step2 = PythonScriptStep(name="Validate", script_name="validate.py",

 inputs=[data_output])

Building and publishing an ML pipeline | 155

Similarly to the previous section, instead of relying on pipeline inputs and outputs, we
can generalize the data flows to command-line arguments. Here are the same two steps
and data flow definitions using arguments instead:

step1 = PythonScriptStep(name="Score", script_name="score.py",

 arguments=["--input-path", data_input,

 "--output-path", data_output])

step2 = PythonScriptStep(name="Validate", script_name="validate.py",

 arguments=["--input-path", data_output])

Once we pass the expected output path to the scoring file, we need to parse the
command-line arguments to retrieve the path. The scoring file looks like the following
snippet, which will read the output path and output a pandas DataFrame to the desired
output location:

in the scoring script 'score.py'

parser = argparse.ArgumentParser()

parser.add_argument('--output-path', type=str, dest='output_path')

args = parser.parse_args()

Create output directory

os.makedirs(os.path.dirname(args.output_path), exist_ok=True)

Write Pandas dataframe to output path

df.to_csv(args.output_path)

As we can see in the previous example, we can read the output path from the
command-line arguments and use it in the Python script as a standard file path.
Hence, we need to make sure the file path exists and output some tabular data into the
location. Next, we define the input for the second validation step that reads the newly
created data:

in the validation script 'validate.py'

parser = argparse.ArgumentParser()

parser.add_argument('--input-path', type=str, dest='input_path')

args = parser.parse_args()

dataset = Dataset.Tabular.from_delimited_files(args.input_path)

156 | Azure Machine Learning pipelines

As we can see, the code looks very similar to standard data inputs from the previous
section. We parse the data path from the command-line arguments and read the
dataset from the specified location.

Finally, we will take a look at how to persist the output of a pipeline step for usage
outside of the pipeline.

Persisting data outputs with PipelineData.as_dataset()

In this section, we want to look at the persisted outputs of a pipeline. It's quite common
(as we will see in Chapter 12, Deploying and operating machine learning models) for a
pipeline to be used to implement data transformation and hence expect a data output.

In the previous section, we learned about creating outputs from pipeline steps with
PipelineData, mainly to connect these outputs to inputs of subsequent steps. However,
we can use the same method to define a final persisted output of a pipeline.

Doing so is very simple once you know how to create, persist, and version datasets.
The reason for this is that we can convert a PipelineData object into a dataset using the
as_dataset() method. Once we have a reference to the Dataset object, we can go ahead
and either export it to a specific datastore or register it as a dataset in the workspace.

Here is a snippet of how to convert a PipelineData object defined as output in a pipeline
step to a dataset and register it in the Azure Machine Learning workspace:

step_output_ds = step_output_data.as_dataset()

step_output_ds.register(

 name="mnist_predictions", create_new_version=True)

By calling the preceding authoring code, you will be able to access the resulting
predictions as a dataset in any compute instance connected with your workspace.

Next, we will take a look at the different ways to trigger pipeline execution.

Publishing, triggering, and scheduling a pipeline

After you have created your first simple pipeline, you have multiple ways of running the
pipeline. One example that we have already seen was submitting the pipeline directly as
an experiment to Azure Machine Learning. This would simply execute the pipeline from
the same authoring script where the pipeline was configured. While this is a good start
when executing a pipeline, there are other ways to trigger, parametrize, and execute it.

Common ways to execute a pipeline include the following:

• Publishing a pipeline as a web service

• Triggering a published pipeline using a webhook

• Scheduling a published pipeline to continuously run with a predefined frequency

Building and publishing an ML pipeline | 157

In this section, we will look at all three methods to help you trigger and execute your
pipelines with ease. Let's first start by publishing and versioning your pipeline as a web
service.

Publish a pipeline as a web service

A common reason to split an ML workflow into a reusable pipeline is so that you can
parametrize and trigger it for various tasks whenever needed. Good examples are
common pre-processing tasks, feature engineering steps, and batch scoring runs. The
latter will be tackled in more detail in Chapter 12, Deploying and operating machine
learning models.

Hence, turning a pipeline into a parametrizable web service that we can trigger from
any other application is a really great way of deploying your ML workflow. Let's get
started and wrap and deploy the previously built pipeline as a web service.

As we want our published pipeline to be configurable through HTTP parameters, we
need to first create these parameter references. Let's create a parameter to control the
learning rate of our training pipeline:

from azureml.pipeline.core.graph import PipelineParameter

lr_param = PipelineParameter(name="lr_arg", default_value=0.01)

Next, we link the pipeline parameter with the pipeline step by passing it as an argument
to the training script. We extend the step from the previous section:

step = EstimatorStep(name="CNN_Train", arguments=[

 '--train-data', mnist_dataset.as_named_input('mnist').as_mount(),

 '--learning-rate', lr_param],

 estimator=estimator, compute_target=cpu_cluster)

In the preceding example, we add the learning rate as a parameter to the list of
command-line arguments. In the training script, we can simply parse the command-line
arguments and read the parameter:

in the scoring script 'score.py'

parser = argparse.ArgumentParser()

parser.add_argument('--learning-rate', type=float, dest='lr')

args = parser.parse_args()

print learning rate

print(args.lr)

158 | Azure Machine Learning pipelines

Next, the only step left is to publish the pipeline. To do so, we create a pipeline and call
the publish() method. We need to pass a name and version to the pipeline, which will
now be a versioned published pipeline:

pipeline = Pipeline(ws, steps=[step])

service = pipeline.publish(name="CNN_Train_Service", version="1.0")

service_id = service.id

service_endpoint = service.endpoint

That's all the code you need to expose a pipeline as a parametrized web service
with authentication. If you want to abstract your published pipeline from a specific
endpoint—for example, to iterate on the development process of your pipeline while
letting other teams integrate the web service into their application—you can as well
deploy pipeline webhooks as endpoints.

Let's look at an example where we take the previously created pipeline service and
expose it through a separate endpoint:

from azureml.pipeline.core import PipelineEndpoint

application = PipelineEndpoint.publish(workspace=ws, pipeline=service,

 name="CNN_Train_Endpoint")

service_id = application.id

service_endpoint = application.endpoint

We have now deployed and decoupled the pipeline from the web service endpoint. Now,
we can call and trigger the endpoint through the service endpoint. Let's take a look at
this in the next section.

Triggering a published pipeline using a webhook

The published pipeline web service requires authentication. So, let's first retrieve an
Azure Active Directory token before we call the web service:

from azureml.core.authentication import AzureCliAuthentication

cli_auth = AzureCliAuthentication()

aad_token = cli_auth.get_authentication_header()

Building and publishing an ML pipeline | 159

Using the authentication token, we can now trigger and parametrize the pipeline by
calling the service endpoint. Let's look at an example using the requests library. We
can configure the learning rate through the lr_arg parameter, defined in the previous
section, as well as the experiment name by sending a custom JSON body. If you recall,
the pipeline will still run as an experiment in your Azure Machine Learning workspace:

import requests

response = requests.post(service_endpoint, headers=aad_token,

 json={"ExperimentName": "mnist-train",

 "ParameterAssignments": {"lr_arg": 0.05}})

We observe in the preceding code snippet that we call the pipeline webhook using
a POST request and configure the pipeline run by sending a custom JSON body. For
authentication, we also need to pass the authentication as an HTTP header.

In this example, we used a Python script to trigger the web service endpoint. However,
you can use any other Azure service to trigger this pipeline now through the webhook,
such as Azure Logic Apps, CI/CD pipelines in Azure DevOps, or any other custom
application. If you want your pipeline to run periodically instead of having to trigger it
manually, you can set up a pipeline schedule. Let's take a look at this in the next section.

Scheduling a published pipeline to continuously run with a predefined frequency

Setting up continuous triggers for workflows is a common use case when building
pipelines. These triggers could run a pipeline and retrain a model every week or every
day if new data is available. Azure Machine Learning pipelines support two types
of scheduling techniques: continuous scheduling through a pre-defined frequency,
and reactive scheduling and data change detection through a polling interval. In this
section, we will take a look at both approaches.

Before we start scheduling a pipeline, we first explore a way to list all the previously
defined pipelines of a workspace. To do so, we can use the PublishedPipeline.list()
method, similar to the list() method from our Azure Machine Learning workspace
resources. Let's print the name and ID of every published pipeline in the workspace:

from azureml.pipeline.core import PublishedPipeline

for pipeline in PublishedPipeline.list(ws):

 print("name: %s, id: %s" % (pipeline.name, pipeline.id))

To set up a schedule for a published pipeline, we need to pass the pipeline ID as an
argument. Therefore, we can retrieve the desired pipeline ID from the preceding code
snippet and plug it into the schedule declaration.

160 | Azure Machine Learning pipelines

First, we look at continuous schedules that re-trigger a pipeline with a predefined
frequency similar to cron jobs. To define the scheduling frequency, we need to create a
ScheduleRecurrence object. Here is an example snippet to create a recurring schedule:

from azureml.pipeline.core.schedule import ScheduleRecurrence, Schedule

recurrence = ScheduleRecurrence(frequency="Minute", interval=15)

recurring_schedule = Schedule.create(ws, name="CNN_Train_Schedule",

 pipeline_id=pipeline_id, experiment_name="mnist-train",

 recurrence=recurrence, pipeline_parameters={})

The preceding code is all you need to set up a recurring schedule that continuously
triggers your pipeline. The pipeline will run as the defined experiment in your Azure
Machine Learning workspace. Using the pipeline_parameters argument, you can pass
additional parameters to the pipeline runs.

Azure Machine Learning pipelines also support another type of recurring scheduling,
namely polling for changes in a datastore. This type of scheduling is referred to as
reactive scheduling and requires a connection to a Datastore object. It will trigger your
pipeline whenever data changes in your datastore. Here is an example of setting up a
reactive schedule:

from azureml.core.datastore import Datastore

use default datastore 'ws.get_default_datastore()'

or load a custom registered data store

datastore = Datastore.get(workspace, 'mldemodatastore')

5 min polling interval

polling_interval = 5

 reactive_schedule = Schedule.create(ws, name="CNN_Train_OnChange",

 pipeline_id=pipeline_id, experiment_name="mnist-train",

 datastore=datastore, data_path_parameter_name="mnist_data"

 polling_interval=polling_interval, pipeline_parameters={})

Building and publishing an ML pipeline | 161

As you can see, in the preceding example, we set up the reactive schedule using a
datastore reference and a polling interval in minutes. Hence, the schedule will check
each polling interval to see which blobs have changed and use those to trigger the
pipeline. The blob names will be passed to the pipeline using the data_path_parameter_
name parameter. Similar to the previous schedule, you can also send additional
parameters to the pipeline using the pipeline_parameters argument.

Finally, let's take a look at how to programmatically stop a schedule once it has been
enabled. To do so, we need a reference to the schedule object. We can get this—similar
to any other resource in Azure Machine Learning—by fetching the schedules for a
specific workplace:

for schedule in Schedule.list(ws):

 print(schedule.id)

We can filter this list using all available attributes on the schedule object. Once we've
found the desired schedule, we can simply disable it:

schedule.disable(wait_for_provisioning=True)

Using the additional argument wait_for_provisioning, we ensure that we block code
execution until the schedule is really disabled. You can easily re-enable the schedule
using the Schedule.enable method. Now you can create recurring and reactive
schedules, continuously run your Azure Machine Learning pipelines, and disable them if
they're not needed anymore. Next, we will take a look at parallelizing execution steps.

Parallelizing steps to speed up large pipelines

It's inevitable in many cases that the pipeline will process more and more data over
time. In order to parallelize a pipeline, you can run pipeline steps in parallel or sequence
or parallelize a single pipeline step computation by using ParallelRunConfig and
ParallelRunStep.

Before we jump into parallelizing a single-step execution, let's first discuss the control
flow of a simple pipeline. We start with a simple pipeline that is constructed using
multiple steps as shown in the following example:

pipeline = Pipeline(ws, steps=[step1, step2, step3])

When we submit this pipeline, how will these three steps be executed—in series, in
parallel, or even in an undefined order? In order to answer the question, we need
to look into the definitions of the individual steps. If all steps are independent and
the compute target for each step is large enough, all steps are executed in parallel.
However, if you defined PipelineData as the output of step1 and the input of step2,
step2 will only be executed after step1 has finished.

162 | Azure Machine Learning pipelines

The data connections between the pipeline steps implicitly define the execution
order of the steps. If no dependency exists between the steps, all steps are scheduled
in parallel.

There is one exception to the preceding statement, which is enforcing a specific
execution order of pipeline steps without a dedicated data object as a dependency. In
order to do this, you can define these dependencies manually, as shown in the next
code snippet:

step3.run_after(step1)

step3.run_after(step2)

The preceding configuration will first execute step1 and step2 in parallel before
scheduling step3, thanks to your explicitly configured dependencies. This can be
useful when you are accessing state or data in resources outside of the Azure Machine
Learning workspace and hence the pipeline cannot implicitly create a dependency.

Now that we have answered the question of step execution order, we want to learn how
we can execute a single step in parallel. A great use case for this is batch scoring a large
amount of data. Rather than partitioning your input data as input for multiple steps, you
want the data as input for a single step. However, to speed up the scoring process, you
want a parallel execution of the scoring for the single step.

In Azure Machine Learning pipelines, you can use a ParallelRunStep step to configure
parallel execution for a single step. To configure the data partitions and parallelization
of the computation, you need to create a ParallelRunConfig object. The parallel run
step is a great choice for any type of parallelized computation. Let's walk through an
example of setting up parallel execution for a single pipeline step.

First, our training script needs a Python environment to run in. Therefore, we define a
reusable environment for this batch scoring example. We choose a pre-existing curated
environment and add the TensorFlow package:

from azureml.core import Environment

from azureml.core.conda_dependencies import CondaDependencies

use a curated default environment

batch_env = Environment.get(ws, name="AzureML-Minimal")

conda_dep = CondaDependencies()

conda_dep.add_conda_package("tensorflow")

batch_env.python.conda_dependencies=conda_dep

Building and publishing an ML pipeline | 163

Next, we need to set up a ParallelRunConfig instance, which will help us to split the
input data into smaller partitions (also called batches or mini-batches) of data. We
configure batch size as a pipeline parameter that can be set when calling the pipeline
step:

from azureml.pipeline.core import PipelineParameter

from azureml.pipeline.steps import ParallelRunConfig

parallel_run_config = ParallelRunConfig(entry_script='score.py',

 mini_batch_size=PipelineParameter(name="batch_size",
 default_value="10"),

 output_action="append_row",

 append_row_file_name="parallel_run_step.txt",

 environment=batch_env,

 compute_target=cpu_cluster,

 process_count_per_node=2,

 node_count=2

)

The preceding snippet defines the run configuration for parallelizing the computation
by splitting the input into mini-batches. We configure the batch size as a pipeline
parameter, batch_size. We also configure the compute target and parallelism with the
node_count and process_count_per_node parameters. Using the preceding settings, we
can score four mini-batches in parallel.

The score.py script is a deployment file that needs to contain init() and run(batch)
methods. The argument batch contains a list of filenames that will get extracted
from the input argument of the step configuration. We will learn more about this file
structure in Chapter 12, Deploying and operating machine learning models.

The run method in the score.py script should return the scoring results or write the
data to an external datastore. Depending on this, the output_action argument needs to
be set to either append_row, which means that all values will be collected in a result file,
or summary_only, which means that the user will deal with storing the results. You can
define the result file in which all rows will get appended using the append_row_file_name
argument.

164 | Azure Machine Learning pipelines

As you can see, setting up the run configuration for a parallel step is not simple and
requires a bit of fiddling. However, once set up and configured properly, it can be used
to scale out a computational step and run many tasks in parallel. Hence, we can now
define ParallelRunStep with all the required inputs and outputs:

from azureml.pipeline.steps import ParallelRunStep

from azureml.core.dataset import Dataset

from azureml.core.datastore import Datastore

datastore = Datastore.get(workspace, 'mldemodatastore')

parallelrun_step = ParallelRunStep(

 name="ScoreParallel",

 parallel_run_config=parallel_run_config,

 inputs=[Dataset.get_by_name(ws, 'mnist_data')],

 output=PipelineData('mnist_results', datastore=datastore),

 allow_reuse=True

)

As you can see, we read from the mnist_data dataset, which references all the files in
the datastore. We write the results to the mnist_results folder in our custom datastore.
Finally, we can start the run and look at the results. To do so, we submit the pipeline as
an experiment run to Azure Machine Learning:

from azureml.pipeline.core import Pipeline

pipeline = Pipeline(workspace=ws, steps=[parallelrun_step])

pipeline_run = exp.submit(pipeline)

pipeline_run.wait_for_completion(show_output=True)

Splitting a step execution into multiple partitions will help you to speed up the
computation of large amounts of data. It pays off as soon as the time of computation
is significantly longer than the overhead of scheduling a step execution on a compute
target. Therefore, ParallelRunStep is a great choice for speeding up your pipeline with
only a few changes in your pipeline configuration. Next, we will take a look into better
modularization and reusability of pipeline steps.

Building and publishing an ML pipeline | 165

Reusing pipeline steps through modularization

By splitting your workflow into pipeline steps, you are laying the foundation for
reusable ML and data processing building blocks. However, instead of copying and
pasting your pipelines, pipeline steps, and code into other projects, you might want to
abstract your functionality into functional high-level modules.

Let's look at an example. We assume you are building a pipeline step that takes in a
dataset of user and item ratings and outputs a recommendation of the top five items
for each user. However, while you are fine-tuning the recommendation engine, you
want to enable your colleagues to integrate the functionality into their pipeline. A great
way would be to separate the implementation and usage of the code, define input and
output data formats, and modularize and version it. That's exactly what modules do in
the scope of Azure Machine Learning pipeline steps.

Let's create a module, the container that will hold a reference to the computational
step:

from azureml.pipeline.core.module import Module

module = Module.create(ws, name="TopItemRecommender",
 description="Recommend the top 5 items for each user")

Next, we define inputs and outputs for the module using InputPortDef and
OutputPortDef bindings. These are input and output references that later need to be
bound to data references. We use these bindings to abstract all of our inputs and
outputs:

from azureml.pipeline.core.graph import InputPortDef, OutputPortDef

in1 = InputPortDef(name="in1", default_datastore_mode="mount",
 default_data_reference_name=datastore.name, label="Ratings")

out1 = OutputPortDef(name="out1", default_datastore_mode="mount",
 default_datastore_name=datastore.name, label="Recommendation")

Finally, we can define the module functionality by publishing a Python script for this
module:

module.publish_python_script("train.py", source_directory="./rec",

 params = {"numTraits": 5}, inputs=[in1], outputs=[out1],

 version="1", is_default=True)

166 | Azure Machine Learning pipelines

That's all you need to do to enable others to reuse your recommendation block in their
Azure Machine Learning pipelines. By using versioning and default versions, you can
specify exactly what code is pulled by your users. As we can see, you can also define
multiple inputs and outputs for each module, and define configurable parameters
for modules. In addition to publishing functionality as Python code, we could as well
publish an Azure Data Lake Analytics or Azure Batch step.

Next, we will take a look at how a module can be integrated into an Azure Machine
Learning pipeline and executed together with custom steps. To do so, we first load the
module that was previously created using the following command:

from azureml.pipeline.core.module import Module

module = Module.get(ws, name="TopItemRecommender")

Now, the great thing about this is that the preceding code will work in any Python
interpreter or execution engine that has access to your Azure Machine Learning
workspace. This is huge: there is no copying of code, no need to check out
dependencies, and no need to define any additional access permissions for your
application—everything is integrated with your workspace.

First, we need to wire up inputs and outputs for this pipeline step. Let's pass the inputs
from the pipeline directly to the recommendation module and output everything to the
pipeline outputs:

from azureml.pipeline.core import PipelineData

in1 = PipelineData("in1", datastore=datastore, output_mode="mount",
 is_directory=False)

input_wiring = {"in1": in1}

out1 = PipelineData("out1", datastore=datastore, output_mode="mount",
 is_directory=False)

output_wiring = {"out1": out1}

Now, we parametrize the module with the use of pipeline parameters. This lets
us configure a parameter in the pipeline, which we can pass through to the
recommendation module. In addition, we can define a default parameter for the
parameter when used in this pipeline:

from azureml.pipeline.core import PipelineParameter

num_traits = PipelineParameter(name="numTraits", default_value=5)

Building and publishing an ML pipeline | 167

We already defined the inputs and outputs for this pipeline, as well as the input
parameters for the pipeline step. The only thing we are missing is bringing everything
together and defining a pipeline step. Similar to the previous section, we can define
a pipeline step that will execute the modularized recommendation block. To do so,
instead of using PythonScriptStep, we will now use ModuleStep:

from azureml.core import RunConfiguration

from azureml.pipeline.steps import ModuleStep

step = ModuleStep(module= module, version="1",

 runconfig=RunConfiguration(), compute_target=aml_compute,

 inputs_map=input_wiring, outputs_map=output_wiring,

 arguments = ["--output_sum", first_sum,

 "--output_product", first_prod,

 "--num-traits", num_traits])

Finally, we can execute the pipeline by submitting it as an experiment to our Azure
Machine Learning workspace. This code is very similar to what we saw in the previous
section:

from azureml.core import Experiment

from azureml.pipeline.core import Pipeline

pipeline = Pipeline(ws, steps=[step])

exp = Experiment(ws, "item-recommendation")

run = exp.submit(pipeline)

run.wait_for_completion(show_output=True)

The preceding step executes the modularized pipeline as an experiment in your Azure
Machine Learning workspace. However, you can also choose any other publishing
method that we have discussed in the previous sections, such as publishing as a web
service or scheduling the pipeline.

Splitting pipeline steps into reusable modules is extremely helpful when working with
multiple teams on the same ML projects. All teams can work in parallel and the results
can be easily integrated into a single Azure Machine Learning workspace. Let's take a
look at how Azure Machine Learning pipelines integrate with other Azure services.

168 | Azure Machine Learning pipelines

Integrating pipelines with other Azure services
It's rare that users use only a single service to manage data flows, experimentation,
training, deployment, and CI/CD in the cloud. Other services provide specific benefits
that make them a better fit for certain tasks, such as Azure Data Factory for loading
data into Azure, as well as Azure Pipelines for CI/CD and running automated tasks in
Azure DevOps.

The strongest argument for betting on a cloud provider is strong integration with the
individual services. In this section, we will see how Azure Machine Learning pipelines
integrate with other Azure services. The list for this section would be a lot longer if
we were to cover every possible service for integration. As we learned in this chapter,
you can trigger a published pipeline by calling a REST endpoint, and you can submit a
pipeline using standard Python code. This means you can integrate pipelines anywhere
where you can call HTTP endpoints or run Python code.

We will first look into integration with Azure Machine Learning designer. The designer
lets you build pipelines using graphical blocks, and these pipelines, published pipelines,
and pipeline runs will show up in the workspace just like any other pipeline that
we have built in this chapter. Therefore, it is a good idea to take a quick look at the
commonalities and differences.

Next, we will take a quick look at integrating Azure Machine Learning pipelines with
Azure Data Factory, arguably an integration that is used the most. It's a very natural
instinct to include ML pipelines with ETL pipelines, for scoring, enriching, or enhancing
data during the ETL process.

Finally, we will compare Azure Machine Learning pipelines with Azure Pipelines for CI/
CD in Azure DevOps. While Azure DevOps was used mainly for application code and
app orchestration, it is now transitioning to provide fully end-to-end MLOps workflows.
Let's start with the designer and jump right in.

Building pipelines with the Azure Machine Learning designer

The Azure Machine Learning designer is a graphical interface for creating complex ML
pipelines through a drag-and-drop interface. You can choose functionality represented
as blocks for data import (using Datastore and Dataset under the hood).

Figure 5.1 shows a simple pipeline for training and scoring a Boosted Decision Tree
Regression model. As you can see, the block-based programming style requires less
knowledge about the individual blocks, and it allows you to build complex pipelines
without writing code:

Integrating pipelines with other Azure services | 169

Figure 5.1. An Azure Machine Learning designer pipeline

Note

The Azure Machine Learning designer is a newer, better version of the deprecated
Azure Machine Learning Studio (classic) product, which is now tightly integrated
into your Azure Machine Learning workspace.

Some actions, such as connecting the output of one computation to the input of the
next computation, are arguably more convenient to create in the visual UI than with
code. Other actions, such as creating parallel executions of large data batches, are a bit
easier to handle and maintain in a code environment. Due to our code-first approach
for reproducibility, testability, and version control, we usually prefer code for authoring
and execution.

It's worth noting that the functionality of pipelines in the designer and pipelines using
code is not the same. While you have a broad set of preconfigured abstract functional
blocks—such as the Boosted Decision Tree Regression block in Figure 5.1—you can't
access these functionalities in code. However, you can use scikit-learn, PyTorch,
TensorFlow, and more to reuse an existing functionality or build your own functionality
in code.

170 | Azure Machine Learning pipelines

Thanks to the first-class integration from the designer into the workspace, you can
access all files, models, and datasets of the workspace from within the designer. An
important takeaway is that all resources that are created in the workspace, such as
pipelines, published pipelines, real-time endpoints, models, datasets, and more, are
stored in a common system—independently of where they were created.

Azure Machine Learning pipelines in Azure Data Factory

When moving data and working with ETL and trigger computations in various Azure
services, you will most likely come across Azure Data Factory. It is a very popular
service for moving large amounts of data into Azure, performing processing and
transformations, building workflows, and triggering many other Azure or partner
services.

Azure Machine Learning pipelines integrate very well with Azure Data Factory and you
can easily configure and trigger the execution of a published pipeline through Data
Factory. To do so, you need to drag the ML Execute Pipeline activity to your Data
Factory canvas and specify the pipeline ID of the published pipeline. In addition, you
can specify pipeline parameters as well as the experiment name for the pipeline run.

Figure 5.2 shows how the ML Execute Pipeline step can be configured in Azure Data
Factory. It uses a linked service to connect to your Azure Machine Learning workspace,
which allows you to select the desired pipeline from a drop-down box:

Figure 5.2. Azure Data Factory with an Azure Machine Learning activity

Integrating pipelines with other Azure services | 171

If you are configuring the computational steps using JSON, you can use the following
snippet to create an ML Execute Pipeline activity with Azure Machine Learning as
a linked service. Again, you must specify the pipeline ID and can pass an experiment
name as well as pipeline parameters:

{

 "name": "Machine Learning Execute Pipeline",

 "type": "AzureMLExecutePipeline",

 "linkedServiceName": {

 "referenceName": "AzureMLService",

 "type": "LinkedServiceReference"

 },

 "typeProperties": {

 "mlPipelineId": "<insert pipeline id>",

 "experimentName": "data-factory-pipeline",

 "mlPipelineParameters": {

 "batch_size": "10"

 }

 }

}

Finally, you can trigger the step by adding triggers or outputs into the ML Execute
Pipeline activity. This will finally trigger your published Azure Machine Learning
pipeline and start the execution in your workspace. This is a great addition and makes
it easy for other teams to reuse your ML pipelines during classical ETL and data
transformation processes.

Azure Pipelines for CI/CD

Azure Pipelines is a feature of Azure DevOps that lets you run, build, test, and
deploy code as a CI/CD process. Hence, they are flexible pipelines for code and app
orchestration, with many advanced features such as approval queues and gated phases.

By allowing you to run multiple blocks of code, the best way to integrate Azure Machine
Learning into Azure DevOps is by using Python script blocks. If you followed this book
and used a code-first approach to author your experiments and pipelines, then this
integration is very easy. Let's take a look at a small example.

172 | Azure Machine Learning pipelines

First, let's write a utility function that returns a published pipeline given a workspace
and pipeline ID as parameters. We will need this function in this example:

def get_pipeline(workspace, pipeline_id):

 for pipeline in PublishedPipeline.list(workspace):

 if pipeline.id == pipeline_id:

 return pipeline

 return None

Next, we can go ahead and implement a very simple Python script that allows us to
configure and trigger a pipeline run in Azure. We initialize the workspace, retrieve the
published pipeline, and submit the pipeline as an experiment to the Azure Machine
Learning workspace, all configurable and all with only a few lines of code:

ws = Workspace.get(name=os.environ.get("WORKSPACE_NAME"),

 subscription_id=os.environ.get("SUBSCRIPTION_ID"),

 resource_group=os.environ.get("RESOURCE_GROUP"))

pipeline = get_pipeline(args.pipeline_id)

pipeline_parameters = args.pipeline_parameters

exp = Experiment(ws, name=args.experiment_name)

run = exp.submit(pipeline, pipeline_parameters=pipeline_parameters)

print("Pipeline run initiated %s" % run.id)

The preceding code demonstrates how we can integrate a pipeline trigger into an Azure
pipeline for CI/CD. We can see that once the workspace is initialized, the code follows
the exact same pattern as if we were submitting the published pipeline from our local
development environment. In addition, we can configure the pipeline run through
environment variables and command-line parameters. We will see this functionality in
action in Chapter 13, MLOps—DevOps for machine learning.

Summary | 173

Summary
In this chapter, you have learned how to use and configure Azure Machine Learning
pipelines to split an ML workflow into multiple steps, and how to use pipelines and
pipeline steps for estimators, Python execution, and parallel execution. You configured
pipeline inputs and outputs using Dataset and PipelineData and managed to control the
execution flow of a pipeline.

As another milestone, you deployed the pipeline as a PublishedPipeline instance to an
HTTP endpoint. This lets you configure and trigger pipeline execution with a simple
HTTP call. After that, you implemented automatic scheduling based on time frequency,
and you used reactive scheduling based on changes in the underlying dataset. Now the
pipeline can rerun your workflow when the input data changes without any manual
interaction.

Finally, we also modularized and versioned a pipeline step, so it can be reused in other
projects. We used InputPortDef and OutputPortDef to create virtual bindings for data
sources and sinks. In the last step, we looked into the integration of pipelines into other
Azure services, such as the Azure Machine Learning designer, Azure Data Factory, and
Azure DevOps.

In the next chapter, we will look into more advanced preprocessing techniques, such
as category embeddings and natural language processing (NLP), to extract semantic
meaning from text features.

In the previous chapters, we learned about many standard transformation and
preprocessing approaches within the Azure Machine Learning (ML) service and Azure
Machine Learning pipelines. In this chapter, we want to go one step further to extract
features from textual and categorical data—a problem that users often face when
training ML models.

This chapter will describe the foundations of feature extraction with Natural Language
Processing (NLP). This will help you to practically implement semantic embeddings
using NLP for your ML pipelines.

First, we will take a look at the differences between textual, categorical, nominal, and
ordinal data. This classification will help you to decide the best feature extraction and
transformation technique per feature type. Later, we will look at the most common
transformations for categorical values, namely label encoding and one-hot encoding.
Both techniques will be compared and tested to understand the different use cases and
applications for both techniques.

Advanced feature
extraction with NLP

6

176 | Advanced feature extraction with NLP

Next, we will tackle the numerical embedding of textual data. To achieve this, we will
build a simple bag-of-words model, using a count vectorizer. To sanitize the input, you
will build an NLP pipeline consisting of a tokenizer, stop-word removal, stemming, and
lemmatization. We will learn how these different techniques affect a sample dataset
step by step.

Then, we will replace the word count method with a much better word frequency
weighting approach—the term frequency–inverse document frequency (tf-idf)
algorithm. This will help you to compute the importance of words when given a whole
corpus of documents by weighting the occurrence of a term in one document over
the frequency in the corpus. We can improve this technique by using semantic word
embeddings, such as Global Vectors (GloVe) and Word2Vec. Finally, we will take a quick
look at current state-of-the-art language models that are based on sequence-to-
sequence deep neural networks with over 100 million parameters.

The following topics will be covered in this chapter:

• Understanding categorical data Building

• A simple bag-of-words model

• Leveraging term importance and semantics

• Implementing end-to-end language models

Understanding categorical data
Categorical data comes in many forms, shapes, and meanings. It is extremely
important to understand what type of data you are dealing with—is it a string, text, or
numeric value disguised as a categorical value? This information is essential for data
preprocessing, feature extraction, and model selection.

First, we will take a look at the different types of categorical data—namely ordinal,
nominal, and text. Depending on the type, you can use different methods to extract
information or other valuable data from it. Please keep in mind that categorical data is
ubiquitous, either it is in an ID column, a nominal category, an ordinal category, or a
free text field. It's worth mentioning that the more information you have on the data,
the easier the preprocessing is.

Next, we will actually preprocess the ordinal and nominal categorical data by
transforming it into numerical values. This is a required step when you want to use
an ML algorithm later on that can't interpret categorical data, which is true for most
algorithms except, for example, decision-tree-based approaches. Most other algorithms
can only operate (for example, compute a loss function) on a numeric value and so a
transformation is required.

Understanding categorical data | 177

Comparing textual, categorical, and ordinal data

Many ML algorithms, such as support vector machines, neural networks, linear
regression, and so on, can only be applied to numeric data. However, in real-world
datasets, we often find non-numeric columns, such as columns that contain textual
data. The goal of this chapter is to transform textual data into numeric data as an
advanced feature extraction step, which allows us to plug the processed data into any
ML algorithm.

When working with real-world data, you will be confronted with many different types
of textual and/or categorical data. To optimize ML algorithms, you need to understand
the differences in order to apply different preprocessing techniques on the different
types. But first, let's define the three different textual data types:

• Textual data: Free text

• Categorical nominal data: Non-orderable categories

• Categorical ordinal data: Orderable categories

The difference between textual data and categorical data is that in textual data we want
to capture semantic similarities (the similarity in the meaning of the words), whereas in
categorical data we want to differentiate between a small number of variables.

The difference between categorical nominal and ordinal data is that nominal data
cannot be ordered (all categories have the same weight) whereas ordinal categories can
be logically ordered on an ordinal scale.

Figure 6.1 shows an example dataset of comments on news articles, where the first
column, named statement, is a textual field, the column named topic is a nominal
category, and rating is an ordinal category:

Figure 6.1: An example dataset comparing textual, categorical, and ordinal data

178 | Advanced feature extraction with NLP

Understanding the difference between these data representations is essential for
finding the proper embedding technique afterward. It seems quite natural to replace
ordinal categories with an ordinal numeric scale and to embed nominal categories in
an orthogonal space. On the contrary, it's not obvious how to embed textual data into
a numerical space where the semantics are preserved—this will be covered in the later
sections of this chapter dealing with NLP.

Please note that instead of categorical values, you will also see continuous numeric
variables representing categorical information; for example, IDs from a dimension
or look- up table. Although these are numeric values, you should consider treating
them as categorical nominal values, if possible. Here is an example dataset as shown in
Figure 6.2:

Figure 6.2: An example dataset representing categorical data using numeric values

In the preceding example, we can see that the sensorId value is a numeric value that
should be interpreted as a categorical nominal value instead of a numeric value by
default because it doesn't have a numeric meaning. What do you get when you subtract
sensorId 2 from sensorId 1? Is sensorId 10 10 times larger than sensorId 1? These are
typical questions to ask to discover and encode these categorical values. We will see
in Chapter 7, Building ML models using Azure Machine Learning, that by specifying that
these values are categorical, a gradient boosted tree model can optimize these features
instead of treating them as continuous variables.

Transforming categories into numeric values

Let's start by converting categorical variables (both ordinal and nominal) into numeric
values. In this section, we will look at two common techniques for categorical encoding:
label encoding and one-hot encoding (also called dummy coding). While label encoding
replaces a categorical feature column with a numerical feature column, one-hot
encoding uses multiple columns (the number of columns equals the number of unique
values) to encode a single feature.

Understanding categorical data | 179

Both techniques are applied in the same way. During the training iteration, these
techniques find all the unique values in a feature column and assigns them a specific
numeric value (multidimensional for one-hot encoding). This look-up dictionary is
stored, as a result, in the encoder. When the encoder is applied, the values in the
applied column are transformed (replaced) using the look-up dictionary. If the list
of possible values is known beforehand, most implementations allow the encoder to
initialize the look-up dictionary directly from the list of known values, instead of finding
the unique values in the training set. This has the benefit of specifying the order of the
values in the dictionary and so orders the encoded values.

Note

Please note that it's often possible that certain categorical feature values in the
test set don't appear in the training set and hence are not stored in the look-up
dictionary. So, you should add a default category to your encoder that can also
transform unseen values into numeric values.

Now, we will use two different categorical data columns, one ordinal and one nominal
category, to showcase the different encodings. Figure 6.3 shows the dataset with
nominal feature topic, which could represent a list of articles by a news agency:

Figure 6.3: An example dataset showing nominal feature topics

180 | Advanced feature extraction with NLP

Figure 6.4 shows the dataset which contains the ordinal category rating; it could
represent a feedback form for purchased articles on a website:

Figure 6.4: An example dataset representing feedback for purchased articles

First, we take a look at the label encoder. The label encoder assigns an incrementing
value to each unique categorical value in a feature column. So, it transforms categories
into a numeric value between 0 and N-1, where N represents the number of unique
values.

Let's test the label encoder on the topic column in the first table. We train the encoder
on the data and replace the topic column with a numeric topic ID. Here is an example
snippet to train the label encoder and to transform the dataset:

from sklearn import preprocessing

data = load_articles()

enc = preprocessing.LabelEncoder()

enc.fit(data)

enc.transform(data)

The output of the preceding transformation looks similar to Figure 6.5:

Figure 6.5: Derived output on testing the label encoder

Understanding categorical data | 181

The generated look-up table for topicId looks like Figure 6.6:

Figure 6.6: The lookup table for topicId

In the next example, we naively apply the label encoder to the ratings dataset.
The encoder is trained by iterating the training data in order to create the look-up
dictionary:

from sklearn import preprocessing

data = load_ratings()

enc = preprocessing.LabelEncoder()

enc.fit(data)

enc.transform(data)

The output looks similar to the following table shown in Figure 6.7:

Figure 6.7: The lookup dictionary created for the training data

182 | Advanced feature extraction with NLP

From the original training data, the dictionary is generated as shown in Figure 6.8:

Figure 6.8: The dictionary based on the original training data

Do you see something odd in the auto-generated look-up dictionary? Due to the
order of the categorical values in the training data, we created a numeric list with the
following numeric order:

good < very good < bad < average

This is probably not what we anticipated when applying a label encoder on an ordinal
categorical value. The ordering we would be looking for is something like the following:

very bad < bad < average < good < very good

In order to create a label encoder with the right order, we can pass the ordered list of
categorical values to the encoder. This would create a more meaningful encoding, as
shown in Figure 6.9:

Figure 6.9: An encoding based on the ordered list of categorical values

Understanding categorical data | 183

To achieve this in Python, we have to use pandas categorical ordinal variables, a special
kind of label encoder that requires a list of ordered categories as input:

import pandas as pd

data = load_ratings()

categories = ['very bad', 'bad', 'average', 'good', 'very good']

data = pd.Categorical(data, categories=categories, ordered=True)

print(data.codes)

As shown in Figure 6.10, under the hood, we implicitly created the look-up dictionary
for the encoder by passing the categories directly to it in order:

Figure 6.10: The lookup dictionary based on the ordered categories

Note

The key takeaway here is that the label encoder is great for encoding ordinal
categorical data. You also saw that the order of elements matters, and so it is good
practice to manually pass the categories to the encoder in the correct order.

184 | Advanced feature extraction with NLP

Orthogonal embedding using one-hot encoding

In the second part of this section, we will take a look at the one-hot encoder. It will
help us to create an equal-length encoding for nominal categorical values. The one-hot
encoder replaces each unique categorical value in a feature column with a vector of size
N, where N represents the number of unique values. This vector contains only zeroes,
except for one column that contains 1 and represents the column for this specific value.
Here is a snippet to apply the one-hot encoder to the articles dataset:

from sklearn import preprocessing

data = [load_articles()]

enc = preprocessing.OneHotEncoder()

enc.fit(data)

enc.transform(data)

The output of the preceding code will look similar to the following table shown in
Figure 6.11:

Figure 6.11: Orthogonal embedding using one-hot encoding

The look-up dictionary for one-hot encoding has N+1 columns, where N is the
number of unique values in the encoded column. In Figure 6.12, we can see that all
N-dimensional vectors in the dictionary are orthogonal and of an equal length, 1:

Figure 6.12: The lookup dictionary for one-hot encoding

Understanding categorical data | 185

Now, we apply the one-hot encoding technique to the ratings table:

Figure 6.13: A rating table based on the one-hot encoding technique

We can see in Figure 6.33 that even if the original category values are ordinal, the
encoded values cannot be sorted anymore and so this property is lost after the numeric
encoding. So, we can conclude that one-hot encoding is great for nominal categorical
values where the number of unique values is small.

So far, we learned how to embed nominal and ordinal categorical values to numeric
values by using a look-up dictionary and 1- or N-dimensional numeric embedding.
However, we saw that it is somewhat limited in many aspects, such as the number of
unique categories and capabilities to embed free text. In the following sections, we will
learn how to extract words using a simple NLP pipeline.

Categories versus text

It's worth understanding that a categorical value and a textual value are not the same.
Although they both might be stored as a string and probably have the same data type,
a categorical value usually represents a finite set of categories whereas a text value can
hold any textual information.

Why is this distinction important? Once you preprocess your categorical data and
embed it into a numerical space, nominal categories will often be implemented as
orthogonal vectors. You will not automatically be able to compute a distance from
category A to category B or create a semantic meaning between the categories.

However, with textual data, you usually start the feature extraction with a different
approach that assumes that you have similar terms in different observations of your
data. You can use this information to compute meaningful similarity scores between
two textual columns; for example, to measure the number of words that are in common.

186 | Advanced feature extraction with NLP

Therefore, we recommend you thoroughly check what kind of categorical values you
have and how you are aiming to preprocess them. A great exercise is also to compute
the similarity between two rows and to see whether it matches your prediction. Let's
take a look at a simple textual preprocessing approach using a dictionary-based bag-of-
words embedding.

Building a simple bag-of-words model
In this section, we will look at a surprisingly simple concept to tackle the shortcomings
of label encoding for textual data with the bag-of-words concept, which will build
a foundation for a simple NLP pipeline. Don't worry if these techniques look too
simple when you read through it; we will gradually build on top of them with tweaks,
optimizations, and improvements to build a modern NLP pipeline.

A naive bag-of-words model using counting

The main concept that we will build in this section is the bag-of-words model. It is
a very simple concept; that is, modeling any document as a collection of words that
appear in a given document with the frequency of each word. Hence, we throw away
sentence structure, word order, punctuation, and so on and reduce the documents to
a raw count of words. We can then vectorize this word count into a numeric vector
representation, which can then be used for ML, analysis, document comparisons, and
much more. While this word count model sounds very simple, we will encounter quite a
few language-specific obstacles along the way that we will need to resolve.

Let's get started and define a sample document that we will transform throughout this
section:

"Almost before we knew it, we had left the ground. The unknown holds its grounds."

Applying a naive word count on the document gives us a first (too simple) bag-of-words
model as shown in Figure 6.14:

Building a simple bag-of-words model | 187

Figure 6.14: A simple bag-of-words model based on the naïve word count

However, there are many problems with a naive approach such as the preceding one.
We have mixed different punctuations, notations, nouns, verbs, adverbs, and adjectives
in different declinations, conjugations, tenses, and cases. Hence, we have to build a
pipeline to clean and normalize the data using NLP. In this section, we will build up a
pipeline with the following cleaning steps before feeding the data into a count vectorizer
that ultimately counts the word occurrences and collects them in a feature vector.

188 | Advanced feature extraction with NLP

Tokenization – turning a string into a list of words

The first step in building the pipeline is to separate a corpus into documents and
a document into words. This process is called tokenization because the resulting
tokens contain words and punctuations. While splitting a corpus into documents,
documents into sentences, and sentences into words sounds trivial, with a bit of
regular expression (RegEx), there are many non-trivial language-specific issues. Think
about the different uses of periods, commas, and quotes and think about whether you
would have thought about the following words in English: don't, Mr. Smith, Johann
S. Bach, and so on. The Natural Language Toolkit (NLTK) Python package provides
implementations and pre-trained transformers for many NLP algorithms, as well as for
word tokenization. Let's split our document into tokens using nltk:

>>> from nltk.tokenize import word_tokenize

>>> nltk.download('punkt')

>>> tokens = word_tokenize(document)

>>> print(tokens)

['Almost', 'before', 'we', 'knew', 'it', ',', 'we', 'had',

 'left', 'the', 'ground', '.', 'The', 'unknown', 'holds', 'its',

 'grounds', '.']

You can see, in the preceding code, that nltk needs to download the pre-trained
punctuation model in order to run the word tokenizer. The output of the tokenizer is
the words and punctuation.

In the next step, we will remove the punctuation marks as they are not relevant for the
subsequent stemming process. However, we will bring them back for lemmatization
later in this section:

>>> words = [word.lower() for word in tokens if word.isalnum()]

>>> print(words)

['almost', 'before', 'we', 'knew', 'it', 'we', 'had', 'left',

 'the', 'ground', 'the', 'unknown', 'holds', 'its', 'grounds']

In the preceding code, we used the word.islanum() function to extract only
alphanumeric tokens and make them all lowercase. The preceding list of words already
looks much better than the initial naive model. However, it still contains a lot of
unnecessary words, such as the, we, had, and so on, which don't convey any information.

Building a simple bag-of-words model | 189

In order to filter out the noise for a specific language, it makes sense to remove these
words that appear often in texts and don't add any semantic meaning to the text. It is
common practice to remove these so-called stop words using a pre-trained look-up
dictionary. You can load and use such a dictionary by using the pre-trained nltk library
in Python:

>>> from nltk.corpus import stopwords

>>> stopword_set = set(stopwords.words('english'))

>>> words = [word for word in words if word not in stopword_set]

>>> print(words)

['almost', 'knew', 'left', 'ground', 'unknown', 'holds', 'grounds']

The preceding code gives us a nice pipeline where we end up with only the semantically
meaningful words. We can take this list of words to the next step and apply a more
sophisticated transformation/normalization on each word. If we applied the count
vectorizer at this stage, we would end up with the bag-of-words model as shown in
Figure 6.15:

Figure 6.15: The bag-of-words model after applying the count vectorizer

You might ask: what qualifies a word as a stop word other than it occurring often in a
text? Well, that's an excellent question! We can measure the importance of each word
in the current context compared to its occurrences across the text using the tf-idf
method, which will be discussed in the Measuring the importance of words using tf-idf
section.

190 | Advanced feature extraction with NLP

Stemming – rule-based removal of affixes

In the next step, we want to normalize affixes—word endings to create plurals and
conjugations. You can see that with each step, we are diving deeper into the concept
of a single language—English, in this case. However, when applying these steps to a
different language, it's likely that completely different transformations need to be used.
This is what makes NLP such a difficult field.

Removing the affixes of words to obtain the stem of a word is also called stemming.
Stemming refers to a rule-based (heuristic) approach to transform each occurrence of a
word into its word stem. Here is a simple example of some expected transformations:

cars -> car

saying ->

say flies -> fli

As we can see in the preceding example, such a heuristic approach for stemming has to
be built specifically for each language. This is generally true for all other NLP algorithms
as well. For the sake of brevity, we will only discuss English examples in this book.

A popular algorithm for stemming in English is Porter's algorithm, which defines five
sequential reductions rules, such as removing -ed, -ing, -ate, -tion, -ence, -ance, and so
on, from the end of words. The nltk library comes with an implementation of Porter's
stemming algorithm:

>>> from nltk.stem import PorterStemmer

>>> stemmer = PorterStemmer()

>>> words = [stemmer.stem(word) for word in words]

>>> print(words)

['almost', 'knew', 'left', 'ground', 'unknown', 'hold', 'ground']

In the preceding code, we simply apply stemmer to each word in the tokenized
document. The bag-of-words model after this step looks like Figure 6.16:

Figure 6.16: The bag-of-words model after stemming

Building a simple bag-of-words model | 191

While this algorithm works well with affixes, it can't help normalize conjugations and
tenses. This will be our next problem to tackle using lemmatization.

Lemmatization – dictionary-based word normalization

When looking at the stemming examples, we can already see the limitations of the
approach. What would happen, for example, with irregular verb conjugations—such as
are, am, or is—that should all be normalized to the same word, be? This is exactly what
lemmatization tries to solve using a pre-trained set of vocabulary and conversion rules,
called lemmas. The lemmas are stored in a look-up dictionary and look similar to the
following transformations:

are -> be

is -> be

taught -> teach

better -> good

There is one very important point to make when speaking about lemmatization. Each
lemma needs to be applied to the correct word type, hence a lemma for nouns, verbs,
adjectives, and so on. The reason for this is that a word can be either a noun or a verb
in the past tense. In our example, ground could come from the noun ground or the verb
grind; left could be an adjective or the past tense of leave. So, we also need to extract
the word type from the word in a sentence—this process is called Point of Speech (POS)
tagging.

Luckily, the nltk library has us covered once again. To estimate the correct POS tag, we
also need to provide the punctuation:

>>> import nltk

>>> nltk.download('averaged_perceptron_tagger')

>>> tags = nltk.pos_tag(tokens)

>>> print(tags)

[('Almost', 'RB'), ('before', 'IN'), ('we', 'PRP'), ('knew', 'VBD'),

 ('it', 'PRP'), (',', ','), ('we', 'PRP'), ('had', 'VBD'),

 ('left', 'VBN'), ('the', 'DT'), ('ground', 'NN'), ('.', '.'),

 ('The', 'DT'), ('unknown', 'JJ'), ('holds', 'VBZ'),

 ('its', 'PRP$'), ('grounds', 'NNS'), ('.', '.')]

192 | Advanced feature extraction with NLP

The POS tags describe the word type of each token in the document. You can find a
complete list of tags using the nltk.help.upenn_tagset() command. Here is an example
of doing so from the command line:

>>> import nltk

>>> nltk.download('tagsets')

>>> nltk.help.upenn_tagset()

CC: conjunction, coordinating

 & 'n and both but either et for less minus neither nor or plus

 so therefore times v. versus vs. whether yet

CD: numeral, cardinal

 mid-1890 nine-thirty forty-two one-tenth ten million 0.5 one

 forty- seven 1987 twenty '79 zero two 78-degrees eighty-four

 IX '60s .025 fifteen 271,124 dozen quintillion DM2,000 ...

DT: determiner

 all an another any both del each either every half la many

 much nary neither no some such that the them these this those

EX: existential there

 there

FW: foreign word

 gemeinschaft hund ich jeux habeas Haementeria Herr K'ang-si

 vous lutihaw alai je jour objets salutaris fille quibusdam pas

 trop Monte terram fiche oui corporis ...

IN: preposition or conjunction, subordinating

 astride among uppon whether out inside pro despite on by

 throughout below within for towards near behind atop around

 if like until below next into if beside ...

...

The POS tags also include tenses for verbs and other very useful information. However,
for the lemmatization in this section, we only need to know the word type—noun, verb,
adjective, or adverb. One possible choice of lemmatizer is the WordNet lemmatizer in
nltk. WordNet (similar to ImageNet for images) is a lexical database of English words
that groups them into groups of concepts and word types.

Building a simple bag-of-words model | 193

To apply the lemmatizer to the output of the stemming, we need to filter the POS tags
by punctuation and stop words, similar to the previous preprocessing step. Then, we
can use the word tags for the resulting words. Let's apply the lemmatizer using nltk:

>>> from nltk.corpus import wordnet

>>> from nltk.stem import WordNetLemmatizer

>>> nltk.download('wordnet')

>>> lemmatizer = WordNetLemmatizer()

>>> tag_dict = {"J": wordnet.ADJ, "N": wordnet.NOUN, "V": wordnet.VERB, "R":
wordnet.ADV}

>>> pos = [tag_dict.get(t[0].upper(), wordnet.NOUN) for t in zip(*tags)[1]]

>>> words = [lemmatizer.lemmatize(w, pos=p) for w, p in zip(words, pos)]

>>> print(words)

['almost', 'know', 'leave', 'ground', 'unknown', 'hold', 'ground']

The preceding list of words looks beautiful; we could normalize the tenses of the verbs
and transform them into their infinitive form. The resulting bag-of-words model would
look like Figure 6.17:

Figure 6.17: The resulting bag-of-words model after the lemmatizer

A bag-of-words model in scikit-learn

Finally, we can put all our previous steps together to create a state-of-the-art NLP
preprocessing pipeline to normalize input documents and run it through a count
vectorizer to transform it into a numeric feature vector. Doing so for multiple
documents lets us easily compare the semantics of the document in a numerical space.
We could compute cosine similarities on the document's feature vectors to compute
their similarity, plug them into a supervised classification method, or perform clustering
on the resulting document concepts.

194 | Advanced feature extraction with NLP

To recap, let's take a look at the final pipeline for the simple bag-of-words model. I want
to emphasize that this model is only the start of our journey in feature extraction using
NLP. We performed the following steps for normalization:

1. Tokenization

2. Removing punctuation

3. Removing stop-words

4. Stemming

5. Lemmatization with POS tagging

In the last step, we applied CountVectorizer in scikit-learn. It will count the
occurrences of each word, create a global corpus of words, and output a sparse feature
vector of word frequencies. Here is the sample code to pass the preprocessed data from
nltk into CountVectorizer:

>>> from sklearn.feature_extraction.text import CountVectorizer

>>> count_vect = CountVectorizer()

>>> data = [" ".join(words)]

>>> X_train_counts = count_vect.fit_transform(data)

>>> print(X_train_counts)

 (0,0) 1

 (0,3) 1

 (0,4) 1

 (0,1) 2

 (0,5) 1

 (0,2) 1

>>> print(count_vect.vocabulary_)

{'almost': 0, 'know': 3, 'leave': 4, 'ground': 1, 'unknown': 5, 'hold': 2}

As we see in the preceding code, we transform the preprocessed document back into a
string before passing it to CountVectorizer. The reason for this is that CountVectorizer
comes with some configurable preprocessing techniques out of the box, such as
tokenization, stop-word removal, and others. For this demonstration, we want to apply
it to the preprocessed data. The output of the transformation is a sparse feature vector
with the (document id, term id) = term frequency shape. The vocabulary_ parameter
contains a look-up dictionary for the ids term.

Let's find out how we can combine multiple terms in semantic concepts.

Leveraging term importance and semantics | 195

Leveraging term importance and semantics
Everything we have done up to now has been relatively simple and based on word stems
or so-called tokens. The bag-of-words model was nothing but a dictionary of tokens
counting the occurrence of tokens per field. In this section, we will take a look at a
common technique to further improve matching between documents using n-gram and
skip-gram combinations of terms.

Combining terms in multiple ways will explode your dictionary. This will turn into a
problem if you have a large corpus; for example, 10 million words. Hence, we will look at
a common preprocessing technique to reduce the dimensionality of a large dictionary
through Singular Value Decomposition (SVD).

While this approach is, now, a lot more complicated, it is still based on a bag-of-words
model that already works great on a large corpus, in practice. But, of course, we can do
better and try to understand the importance of words. Therefore, we will tackle another
popular technique in NLP to compute the term importance.

Generalizing words using n-grams and skip- grams

In the previous pipeline, we considered each word on its own without any context.
However, as we all know, context matters a lot in language. Sometimes, words belong
together and only make sense in context than on their own. To introduce this context
into the same type of algorithm, we will introduce n-grams and skip-grams. Both
techniques are heavily used in NLP for preprocessing datasets and extracting relevant
features from text data.

Let's start with n-grams. An n-gram is the concatenation for N consecutive entities
(characters, words, or tokens) of an input dataset. Here are some examples for
computing the n-grams on a list of characters:

A, B, C, D -> 1-Gram: A, B, C, D

A, B, C, D -> 2-Gram: AB, BC, CD

A, B, C, D -> 3-Gram: ABC, BCD

196 | Advanced feature extraction with NLP

Here is an example using the built-in ngram_range parameter in scikit-learn's
CountVectorizer to generate multiple n-grams for the input data:

>>> from sklearn.feature_extraction.text import CountVectorizer

>>> count_vect = CountVectorizer(ngram_range=(1,2))

>>> X_train_counts = count_vect.fit_transform(data)

>>> print(count_vect.vocabulary_)

{'almost': 0, 'before': 2, 'we': 24, 'knew': 15, 'it': 11,

 'had': 7, 'left': 17, 'the': 19, 'ground': 4, 'unknown': 22,

 'holds': 9, 'its': 13, 'grounds': 6, 'almost before': 1,

 'before we': 3, 'we knew': 26, 'knew it': 16, 'it we': 12,

 'we had': 25, 'had left': 8, 'left the': 18, 'the ground': 20,

 'ground the': 5, 'the unknown': 21, 'unknown holds': 23,

 'holds its': 10, 'its grounds': 14}

In the preceding code, we can see that instead of the original words, we now also have a
combination of two consecutive words in our trained vocabulary.

We can extend the concept of n-grams to also allow the model to skip words between
each other. This way, we can define the distance of how much further the model can
look for a word and how many words can be skipped in between. Here is an example
using the same characters from before:

A, B, C, D -> 2-Gram (1 skip): AB, AC, BC, BD, CD

A, B, C, D -> 2-Gram (2 skip): AB, AC, AD, BC, BD, CD

Luckily, we find the generalized version of n-grams implemented in nltk as the nltk.
skipgrams method. Setting the skip distance to 0 results in the traditional n-gram
algorithm, we can apply it on our original dataset:

>>> list(nltk.skipgrams(document.split(' '), 2, 1))

[('Almost', 'before'), ('Almost', 'we'), ('before', 'we'),

 ('before', 'knew'), ('we', 'knew'), ('we', 'it,'), ('knew', 'it,'),

 ('knew', 'we'), ('it,', 'we'), ('it,', 'had'), ('we', 'had'),

 ('we', 'left'), ('had', 'left'), ('had', 'the'), ('left', 'the'),

 ('left', 'ground.'), ('the', 'ground.'), ('the', 'The'),

 ('ground.', 'The'), ('ground.', 'unknown'), ('The', 'unknown'),

 ('The', 'holds'), ('unknown', 'holds'), ('unknown', 'its'),

 ('holds', 'its'), ('holds', 'grounds.'), ('its', 'grounds.')]

Leveraging term importance and semantics | 197

In the preceding code, we can observe that skip-grams can generate a lot of additional
useful feature dimensions for the NLP model. In real-world scenarios, both techniques
are often used due to the fact that the individual word order plays a big role in the
semantics.

However, the explosion of new feature dimensions could be devastating if the input
documents are, for example, all websites from the web or large documents. Hence,
we also need a way to avoid an explosion of the dimensions while capturing all the
semantics from the input data. We will tackle this challenge in the next section.

Reducing word dictionary size using SVD

A common problem with NLP is the vast amount of words in a corpus and hence,
exploding dictionary sizes. We saw in the previous example that the size of the
dictionary defines the size of the orthogonal term vectors. Hence, a dictionary size
of 20,000 terms would result in 20,000-dimensional feature vectors. Even without
any n-gram enrichment, this feature vector dimension is too large to be processed on
standard PCs.

Therefore, we need an algorithm to reduce the dimensions of the generated
CountVectorizer while preserving the present information. Optimally, we would
only remove redundant information from the input data and project it into a lower-
dimensional space while preserving all the original information.

The Principal Component Analysis (PCA) transformation would be a great fit for our
solution and help us to transform the input data to lower linearly-unrelated dimensions.
However, computing the eigenvalues requires a symmetric matrix (the same number
of rows and columns), which we don't have, in our case. Hence, we can use the SVD
algorithm, which generalizes the eigenvector computation to non-symmetric matrices.
Due to its numeric stability, it is often used in NLP and information retrieval systems.

The usage of SVD in NLP applications is also called Latent Semantic Analysis (LSA),
as the principal components can be interpreted as concepts in a latent feature space.
The SVD embedding transforms the high-dimensional feature vector into a lower-
dimensional concept-space. Each dimension in the concept space is constructed by
a linear combination of term vectors. By dropping the concepts with the smallest
variance, we also reduce the dimensions of the resulting concept space to something
that is a lot smaller and easier to handle. Typical concept spaces have 10s to 100s of
dimensions, while word dictionaries usually have over 100,000.

198 | Advanced feature extraction with NLP

Let's look at an example using the TruncatedSVD implementation from sklearn. The
SVD is implemented as a transformer class and so we need to call fit_transform to fit
a dictionary and transform it in the same step. The SVD is configured to keep only the
components with the highest variance using the n_components argument. As it uses a
randomized algorithm, we seed the pseudo-random number generator by setting a
specific random state:

from sklearn.decomposition import TruncatedSVD

svd = TruncatedSVD(n_components=5, random_state=0)

X_lsa = svd.fit_transform(X_train_counts)

In the preceding code, we perform the LSA on the X_train_counts data and the output
of the CountVectorizer using SVD. We configure the SVD to keep only the first five
components with the highest variance.

By reducing the dimensionality of your dataset, you lose information. Thankfully, we can
compute the amount of variance in the remaining dataset using the trained SVD object:

print(svd.explained_variance_ratio_.sum())

In the preceding code, we can see that we can compute the value of how much variance
of the data is preserved with the configured number of components. Hence, we can now
reduce the number of dimensions while keeping x percent of the information from the
data. This is a very helpful operation and is used in many practical NLP implementations.

We are still using the original word dictionary from the bag-of-words model. One
particular downside of this model is that the more often a term occurs, the higher its
count (and therefore weight) will get. This is a problem because now any term that is
not a stop word and appears often in the text will receive a high weight—independent
of the importance of the term to a certain document. Therefore, we introduce another
extremely popular preprocessing technique—tf-idf.

Measuring the importance of words using tf-idf

One particular downside of the bag-of-words approach is that we simply count the
absolute number of words in a context without checking whether the word generally
appears often in the whole corpus. Hence, an important technique in text mining is to
compute the importance of a certain word in a given context.

Leveraging term importance and semantics | 199

Instead of an absolute count of terms in a context, we want to compute the count of
terms in the context relative to a corpus of documents. By doing so, we will give higher
weight to terms that appear only in a certain context, and reduced weight to terms that
appear in many different documents. Figure 6.18 shows exactly what the tf-idf algorithm
does to compute a weight (w) for a term (t) in a document (d):

Figure 6.18: The formula for tf-idf measure

While the term frequency (ft) counts all the terms in a document, the inverse document
frequency is computed by dividing the total number of documents (N) by the counts of
a term in all documents (fd). The IDF term is usually log-transformed as the total count
of a term across all documents can get quite large.

In the following example, we will not use the tf-idf function directly, but instead, use
TfidVectorizer, which does the counting and then applies the tf-idf function on the
result in one step. Again, the function is implemented as a sklearn transformer and
hence we call fit_transform to fit and transform the dataset:

from sklearn.feature_extraction.text import TfidfVectorizer vect =
TfidfVectorizer()

data = [" ".join(words)]

X_train_counts = vect.fit_transform(data)

print(X_train_counts)

(0, 2) 0.3333333333333333

(0, 5) 0.3333333333333333

(0, 1) 0.6666666666666666

(0, 4) 0.3333333333333333

(0, 3) 0.3333333333333333

(0, 0) 0.3333333333333333

In the preceding code, we apply TfidfVectorizer directly, which returns the same result
as using CountVectorizer and TfidfTransformer combined. We transform a dataset
containing the words of the bag-of-words model and return the tf-idf values. We can
also return the terms for each tf-idf value:

print(vect.get_feature_names())

['almost', 'ground', 'hold', 'know', 'leave', 'unknown']

200 | Advanced feature extraction with NLP

We can see that in this example, ground gets a tf-idf value of 0.667, whereas all the
other terms receive a value of 0.333. This count would now scale relatively when more
documents are added to the corpus—hence, if the word hold were to be included again,
the tf-idf value would actually decrease.

In any real-world pipeline, we would always use all the techniques presented in
this chapter—tokenization, stopword removal, stemming, lemmatization, n-grams/
skip-grams, tf-idf, and SVD—combined in a single pipeline. The result would be a
numeric representation of n-grams/skip-grams of tokens weighted by importance
and transformed to a latent semantic space. Using these techniques for your first NLP
pipeline will get you quite far as you can now capture a lot of information from your
textual data.

So far, we have learned how to numerically encode many kinds of categorical and
textual values using either 1- or N-dimensional labels or counting and weighting
word stems and character combinations. While many of these methods work well in
many situations where you require simple numeric embedding, they all have a serious
limitation—they don't encode semantics. Let's take a look at how we can extract the
semantic meaning of text in the same pipeline.

Extracting semantics using word embeddings

When computing the similarity of news, you would imagine that topics such as tennis,
Formula 1, or soccer would be semantically more similar to each other than topics
such as politics, economics, or science. Yet, for all previously discussed techniques, all
encoded categories are equally different from each other. In this section, we will discuss
a simple method of semantic embedding, also called word embedding.

The previously discussed pipeline using LSA transforms multiple documents into terms
and those terms into semantic concepts that can be compared with other documents.

However, the semantic meaning is based on the term occurrences and importance—
there is no measurement of semantics between individual terms.

Hence, what we are looking for is an embedding of terms into numerical multi-
dimensional space such that each word represents one point in this space. This allows
us to compute a numerical distance between multiple words in this space in order to
compare the semantic meaning of two words. The most interesting benefit of word
embeddings is that algebra on the word embeddings is not only numerically possible
but also makes sense. Consider the following example:

King - Man + Woman = Queen

Leveraging term importance and semantics | 201

We can create such an embedding by mapping a corpus of words on an N-dimensional
numeric space and optimizing the numeric distance based on the word semantics—for
example, based on the distance between words in a corpus. The resulting optimization
outputs a dictionary of words in the corpus and their numeric N-dimensional
representation. In this numeric space, words have the same, or at least similar,
properties as in the semantic space. A great benefit is that these embeddings can be
trained unsupervised and so no training data has to be labeled.

One of the first embeddings is called Word2Vec and is based on a continuous bag-of-
words or a continuous skip-gram model to count and measure the words in a window.
Let's try this functionality and perform a semantic word embedding using Word2Vec:

1. The best Python implementation for word embeddings is gensim, which we will use
here as well. We need to feed our tokens into the model in order to train it:

from gensim.models import Word2Vec

model = Word2Vec(words, size=100, window=5)
vector = model.wv['ground']

In the preceding code, we load the Word2Vec model and initialize it with the list of
tokens from the previous sections, which is stored in the words variable. The size
attribute defines the dimension of the resulting vectors and the window parameter
decides how many words we should consider per window. Once the model is
trained, we can simply look up the word embedding in the model's dictionary.

The code will automatically train the embedding on the set of tokens we provided.
The resulting model stores the word to vector mapping in the wv property.
Optimally, we also use a large corpus or pre-trained model that is either provided
by gensim or other NLP libraries, such as NLTK, to train the embedding and fine-
tune it with a smaller dataset.

2. Next, we can use the trained model to embed all the terms from our document
using the Word2Vec embedding. However, this will result in multiple vectors as
each word returns its own embedding. Therefore, you need to combine all vectors
into a single one using the mean of all embeddings, which has a similar meaning
to the concept in LSA. Also, other reduction techniques are possible; for example,
weighting the individual embedding vectors using their tf-idf:

dim = len(model.wv.vectors[0])
X = np.mean([model.wv[w] for w in words if w in model.wv] or
 [np.zeros(dim)], axis=0)

202 | Advanced feature extraction with NLP

In the preceding function, we compute the mean from all word embedding vectors
of the terms—this is called a mean embedding and it represents the concept of
this document in the embedding space. If a word is not found in the embedding,
we need to replace it with zeros in the computation.

You can use such a semantic embedding for your application by downloading a
pre-trained embedding; for example, on the Wikipedia corpus. Then, you can loop
through your sanitized input tokens and look up the words in the dictionary of the
numeric embedding.

GloVe is another popular technique for encoding words as numerical vectors, developed
by Stanford University. In contrast to the continuous window-based approach, it
uses the global word-word co-occurrence statistics to determine linear relationships
between words:

1. Let's take a look at the pre-trained 6 B tokens embedding trained on Wikipedia
and the Gigaword news archive:

download pre-trained dictionary from
http://nlp.stanford.edu/data/glove.6B.zip
glove = {}
with open('glove.6B.100d.txt') as f:
 for line in f:
 word, coefs = line.split(maxsplit=1)
 coefs = np.fromstring(coefs, 'f', sep=' ')
 glove[word] = coefs

In the preceding code, we only open and parse the pre-trained word embedding in
order to store the word and vectors in a look-up dictionary.

2. Then, we use the dictionary to look up tokens in our training data and merge them
by computing the mean of all GloVe vectors:

X = np.mean([glove[w] for w in words if w in glove] or
 [np.zeros(dim)], axis=0)

The preceding code works very similar to before and returns one vector per word,
which is aggregated by taking their mean at the end. Again, this corresponds with
a semantic concept using all the tokens of the training data.

Implementing end-to-end language models | 203

Gensim provides other popular models for semantic embeddings, such as doc2word,
fastText, and GloVe. The gensim Python library is a great place for utilizing these
pre- trained embeddings or for training your own models. You can now replace your
bag-of- words model with a mean embedding of the word vectors to also capture word
semantics. However, your pipeline is still built out of many tunable components. In the
next section, we will take a look at building an end-to-end language model and reusing
some of the language features from Azure Cognitive Services.

Implementing end-to-end language models
In the previous sections, we trained and concatenated multiple pieces to implement
a final algorithm where most of the individual steps need to be trained as well.
Lemmatization contains a dictionary of conversion rules. Stop words are stored in the
dictionary.

Stemming needs rules for each language and word that the embedding needs to train—
tf- idf and SVD are computed only on your training data but independent of each other.

This is a similar problem to the traditional computer vision approach that we will
discuss in more depth in Chapter 8, Training deep neural networks on Azure, where
many classic algorithms are combined into a pipeline of feature extractors and
classifiers. Similar to breakthroughs of end-to-end models trained via gradient descent
and backpropagation in computer vision, deep neural networks—especially sequence-
to-sequence models—replaced the classical approach, a few years ago.

First, we will take a quick look at improving our previous model using custom
embedding and a Long Short-Term Memory (LSTM) implementation to model a
token sequence. This will give you a good understanding of how we are moving from
an individual preprocessor-based pipeline to a fully end-to-end approach using deep
learning.

Sequence-to-sequence models are models based on encoders and decoders that are
trained on a variable set of inputs. This encoder/decoder architecture is used for a
variety of tasks, such as machine translation, image captioning, and summarization. A
nice benefit of these models is that you can reuse the encoder part of this network to
convert a set of inputs into a fixed-set numerical representation of the encoder. We will
look at the state-of-the-art language representation models and discuss how they can
be used for feature engineering and the preprocessing of your text data.

Finally, we will also look at reusing Azure Cognitive Services APIs for text analytics
to carry out advanced modeling and feature extraction, such as text or sentence
sentiment, key words, or entity recognition. This is a nice approach because you
can leverage the know- how and amount of training data from Microsoft to perform
complex text analytics using a simple HTTP request.

204 | Advanced feature extraction with NLP

End-to-end learning of token sequences

Instead of concatenating different pieces of algorithms to a single pipeline, we want
to build and train an end-to-end model that can train the word embedding, pre-form
latent semantic transformation, and capture sequential information in the text in a
single model. The benefit of such a model is that each processing step can be fine-
tuned for the user's prediction task in a single combined optimization process:

1. The first part of the pipeline will look extremely similar to the previous sections.
We will build a tokenizer that converts documents into sequences of tokens that
are then transformed into a numerical model based on the token sequence. Then,
we use pad_sequences to align all the documents to the same length:

from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences

num_words = 1000
tokenizer = Tokenizer(num_words=num_words)
tokenizer.fit_on_texts(X_words)
X = tokenizer.texts_to_sequences(X_words)
X = pad_sequences(X, maxlen=2000)

2. In the next step, we will build a simple model using Keras, an embedding layer
and an LSTM layer to capture token sequences. The embedding layer will
perform a similar operation to GloVe, where the words will be embedded into a
semantic space. The LSTM cell will ensure that we are comparing sequences of
words instead of single words at a time. We then use a dense layer with a softmax
activation to implement a classifier head:

from keras.layers import Embedding, LSTM, Dense
from keras.models import Sequential

embed_dim = 128
lstm_out = 196

model = Sequential()
model.add(Embedding(num_words, embed_dim,
 input_length=X.shape[1]))
model.add(LSTM(lstm_out, recurrent_dropout=0.2, dropout=0.2))
model.add(Dense(len(labels), activation='softmax'))
model.compile(loss='categorical_crossentropy',
 optimizer='adam',
 metrics=['categorical_crossentropy'])

Implementing end-to-end language models | 205

As you can see in the preceding function, we build a simple neural network using three
layers and a softmax activation for classification. This means that in order to train this
model, we would also need a classification problem to be solved at the same time.
Hence, we do need labeled training data to perform analysis using this approach. In the
next section, we will see how sequence-to-sequence models are used on input-output
text sequences to learn an implicit text representation.

State-of-the-art sequence-to-sequence models

In recent years, another type of model has replaced the traditional NLP pipelines—
transformer-based models. These types of models are fully end-to-end and use
sequence-to-sequence mapping, positional encoding, and multi-head attention layers.
As you might be able to tell, these models are fairly complicated and usually have well
over 100 million parameters.

Popular models at the time of writing are the unidirectional Generative Pre-trained
Transformer (OpenAI GPT) model, the shallowly bidirectional ELMo model,
Bidirectional Encoder Representations from Transformers (BERT), TransformerXL,
and MT-DNN. Models based on the BERT architecture seem to perform particularly
well, but might already have been outperformed by a new tuned or modified
architecture when you are reading this text.

The key takeaway from these models is that they use an encoder/decoder-based
architecture, which allows us to simply borrow the encoder to embed text into a
semantic numerical feature space. Hence, a common approach is to download the
pre-trained model and perform a forward pass through the encoder part of the
network. The fixed-sized numerical output can now be used as a feature vector for any
other model. This is a common preprocessing step and a good trade-off for using a
state-of-the-art language model for numerical embedding.

We won't look at any code in this section as the tools, frameworks, and implementations
are changing rapidly. However, at the time of writing, the Hugging Face transformers
library seems to be the best one regarding pre-trained models and compatibility with
TensorFlow and PyTorch.

Text analytics using Azure Cognitive Services

A good approach in many engineering disciplines is not to reinvent the wheel when
many other companies have already solved the same problem much better than you
will ever be able to solve it. This might be the case for basic text analytics and text
understanding tasks that Microsoft has developed, implemented, and trained and now
offers as a service.

206 | Advanced feature extraction with NLP

What if I told you that when working with Azure, text understanding features such
as sentiment analysis, key phrase extraction, language detection, named entity
recognition, and extraction of Personal Identifiable Information (PII) is just one
request away? Azure provides the Text Analytics API as part of Cognitive Services,
which will solve all these problems for you.

This won't solve the need to transform text into numerical values, but it will make it
easier to extract semantics from your text. One example would be to perform a key
phrase extraction or sentiment analysis using Cognitive Services as an additional
feature engineering step, instead of implementing your own NLP pipeline.

Let's implement a function that returns the sentiment for a given document using the
Text Analytics API of Cognitive Services. This is great when you want to enrich your
data with additional attributes, such as overall sentiment, in the text:

import requests

def cs_sentiment_analyze(text, key, region='westus', lang='en'):

 endpoint = 'https://%s.api.cognitive.microsoft.com' % region

 baseurl = '%s/text/analytics/v3.0-preview.1/sentiment' %endpoint

 headers = {'Content-Type': 'application/json',

 'Ocp-Apim-Subscription-Key': key}

params = {'showStats': False}

payload = {'documents': ['id': 1, 'text': text, 'language': lang]}

r = requests.post(baseurl, json=payload,

 params=params, headers=headers)

return r.json()

text = 'Hello world. This is some input text that I love.'

key = '<insert subscription key>'

res = cs_sentiment_analyze(url, key, features=features) print(res)

The preceding code looks very similar to the computer vision example that we saw in
Chapter 2, Choosing a machine learning service in Azure. In fact, it uses the same API
but just a different endpoint for Text Analytics and, in this case, sentiment analysis
functionality.

Implementing end-to-end language models | 207

Let's run this code and look at the output, which looks very similar to the following
snippet:

{

 "documents": [

 {

 "id": "1",

 "sentiment": "positive",

 "documentScores":

 {

 "positive": 0.998519241809845,

 "neutral": 0.0009635657188483,

 "negative": 0.000517153472174

 }

 }

]

}

We can observe that the JSON response contains a sentiment classification for each
document (positive, neutral, and negative) as well as numeric confidence scores for
each class. You can also see that the resulting documents are stored in an array and
marked with an id value. Hence, you can also send multiple documents to this API using
an ID to identify each document.

Using custom pre-trained language models is great, but for standardized text analytics,
we can simply reuse Cognitive Services. Microsoft has invested tons of resources into
the research and production of these language models, which you can use for your
own data pipelines for a relatively small amount of money. Hence, if you prefer using a
managed service instead of running your customer transformer model, you should try
this Text Analytics API.

208 | Advanced feature extraction with NLP

Summary
In this chapter, you learned how to preprocess textual and categorical nominal and
ordinal data using state-of-the-art NLP techniques.

You can now build a classical NLP pipeline with stop-word removal, lemmatization and
stemming, n-grams, and count term occurrences using a bag-of-words model. We used
SVD to reduce the dimensionality of the resulting feature vector and to generate lower-
dimensional topic encoding. One important tweak to the count-based bag-of-words
model is to compare the relative term frequencies of a document. You learned about
the tf-idf function and can use it to compute the importance of a word in a document
compared to the corpus.

In the following section, we looked at Word2Vec and GloVe, pre-trained dictionaries of
numeric word embeddings. You can now easily reuse a pre-trained word embedding for
commercial NLP applications with great improvements and with accuracy due to the
semantic embedding of words.

Finally, we finished the chapter by looking at a state-of-the-art approach to language
modeling, using end-to-end language representations, such as OpenAI GPT, ELMo,
BERT, or TransformerXL, which are trained as sequence-to-sequence models. The great
benefit of this model is that you can reuse the encoder part of the model to transform
a sequence of text into a numerical representation—very similar to the bag-of-words
approach or the mean embedding of GloVe vectors.

In the next chapter, we will look at training an ML model using Azure Machine Learning,
applying everything we have learned so far.

In the third part of the book, the reader will learn all about training and optimizing
traditional machine learning models as well as deep learning models on Azure. The
reader will implement and train different Deep Neural Networks (DNNs) on Azure using
the capabilities of Azure Machine Learning.

This section comprises the following chapters:

• Chapter 7, Building ML models using Azure Machine Learning

• Chapter 8, Training deep neural networks on Azure

• Chapter 9, Hyperparameter tuning and Automated Machine Learning

• Chapter 10, Distributed machine learning on Azure

• Chapter 11, Building a recommendation engine in Azure

Section 3: Training
Machine Learning

Models

In the previous chapter, we learned how to extract features from textual and categorical
columns using NLP techniques. In this chapter, we will use the knowledge we have
gained so far to create and train a powerful tree-based ensemble classifier.

First, we will look behind the scenes of popular ensemble classifiers such as random
forest, XGBoost, and LightGBM. These classifiers perform extremely well in practical
real-world scenarios, and all are based on decision trees under the hood. By
understanding their main benefits, you will be able to spot problems that can be solved
with ensemble decision tree classifiers easily.

We will also learn the difference between gradient boosting and random forest and
what makes these tree ensembles useful for practical applications. Both techniques
help to overcome the main weaknesses of decision trees and can be applied to many
different classification and regression problems.

Building ML models
using Azure Machine

Learning

7

214 | Building ML models using Azure Machine Learning

Finally, we will train a LightGBM classifier on a sample dataset using all the techniques
we have learned so far. We will write a training script that automatically logs all
parameters, evaluation metrics, and figures, and is configurable with command-line
arguments. Then, we will schedule the training script on an Azure Machine Learning
Compute cluster that we'll generate in two lines of Python code.

In this chapter, we will cover the following topics:

• Working with tree-based ensemble classifiers

• Training an ensemble classifier model using LightGBM

Working with tree-based ensemble classifiers
Supervised tree-based ensemble classification and regression techniques have proved
very successful in many practical real-world applications in recent years. Hence, they
are widely used today in various applications such as fraud detection, recommendation
engines, tagging engines, and many more. Your favorite OS (mobile and desktop), office
program, and audio or video streaming service will use them heavily every day.

Therefore, we will dive into the main reasons and drivers for their popularity and
performance, both for training and scoring, in this section. If you are an expert on
traditional ML algorithms and know the difference between boosting and bagging, you
might as well jump right to the Training an ensemble classifier model using LightGBM
section—otherwise, I encourage you to read this section carefully.

We will first look at decision trees, a very simple technique that is decades old.
I encourage you to follow along even with the simple methods as they build the
foundation of today's state-of-the-art classical supervised ML approaches. We will also
explore the advantages of tree-based classifiers in great detail to help you choose a
classical approach over a deep learning-based ML model.

A single decision tree also has a lot of disadvantages and is always used in an ensemble
model and never as an individual model; we will take a closer look at the disadvantages
later in this section. Afterwards, we will discover methods to combine multiple weak
individual trees into a single strong ensemble classifier that builds upon the strengths
of tree-based approaches and transforms them into what they are today—powerful
multi- purpose supervised ML models that are integrated into almost every off-the-
shelf ML platform.

Working with tree-based ensemble classifiers | 215

Understanding a simple decision tree

Let's first discuss what a decision tree is and how it works. A decision tree estimator is
a supervised ML approach that learns to approximate a function with multiple nested
if/else statements. This function can be a continuous regressor function or a decision
boundary function. Hence, like many other ML approaches, decision trees can be used
for learning both regression and classification problems.

From the preceding description, we can immediately spot a few important advantages
of decision trees:

• One is the flexibility to work on different data distributions, data types, and ML
problems.

• Another advantage and one of the reasons they compete with more complicated
models is their interpretability. Tree-based models and ensembles can be
visualized and even printed out on paper to explain the decision (output) from a
scoring result.

• The third advantage lies in their practical use for training performance, model size,
and validity. Integrating a pre-trained decision tree into a desktop, web, or mobile
application is a lot less complex and is faster than a deep learning approach.

Note

Please note that we don't intend to sell tree-based ensembles as the solution to
every ML problem and to downplay the importance of deep learning approaches.
We rather want to make you aware of the strengths of traditional approaches so
you can evaluate the right approach for your problem.

216 | Building ML models using Azure Machine Learning

Figure 7.1 shows an example of a decision tree used to decide whether a person is fit
or not:

Figure 7.1: Decision tree

This is an example of a trained decision tree, where we can score the model by simply
walking through each node and arriving at a class label at the leaf of the tree.

Advantages of a decision tree

Decision tree-based ML models are extremely popular due to their great strengths
when working on real-world applications where data is messy, biased, and incomplete.
The key advantages are the following:

• Support for a wide range of applications

• They require little data preparation

• The interpretability of the model

• Fast training and fast scoring

First, let's focus on the flexibility of decision trees, which is one of their major strengths
as opposed to many other classical/statistical ML approaches. While the general
framework is very flexible and supports classification, regression, as well as multi-
output problems, it gained a lot of popularity due to the fact that it can handle both
numerical and categorical data out of the box. Thanks to nested if-else trees, it can
also handle nominal categories as well as NULL or missing values in data. Decision trees
are popular because they don't require massive preprocessing and data cleansing
beforehand.

Working with tree-based ensemble classifiers | 217

While data preparation and cleaning are important steps in every ML pipeline, it's still
very nice to have a framework that naturally supports categorical input data out of the
box.

Some ensemble tree-based classifiers are built on top of this advantage, for example,
CatBoost—a gradient boosted trees implementation from Yandex Research with native
support for categorical data.

Another important advantage of tree-based models, especially from a business
perspective, is the interpretability of the model. Unlike other ML approaches, the
output of a decision tree classifier model is not a huge parametric decision boundary
function. Trained deep learning models often generate a model with more than 10-100
million parameters and hence behave like a black box—especially for business decision
makers. While it is possible to gain insights and reason about the activations in deep
learning models, it's usually very hard to reason about the effect of an input parameter
on the output variable.

Interpretability is where tree-based approaches shine. In contrast to many other
traditional ML approaches (such as SVM, logistic regression, or deep learning), a
decision tree is a non- parametric model and therefore, doesn't use parameters to
describe the function to be learned. It uses a nested decision tree that can be plotted,
visualized, and printed out on paper. This allows decision makers to understand every
decision (output) of a tree-based classification model—it may require a lot of paper but
it is always possible.

While speaking about interpretability, I want to mention another important aspect,
which is the influence of a single variable (dimension) on the output. This is something
that works really well in linear regression (without correlated inputs) where we can
interpret the absolute value of the coefficient as a measurement of importance.

Note

Please note that many other approaches, such as SVM and deep learning, don't
give you the notion of feature importance for the individual input dimensions of
the model.

However, decision tree-based approaches excel at this as they internally create each
individual split (decision) based on an importance criterion. This results in an inherent
understanding of how and which feature dimensions are important to the final model.

218 | Building ML models using Azure Machine Learning

We are in such a good flow, let's add another great advantage to the mix. Decision trees
have many practical benefits over traditional statistical models derived from the non-
parametric approach. Tree-based models generally yield good results on a wide variety
of input distributions and even work well when the model assumptions are violated. On
top of that, the size of the trained tree is small compared to deep learning approaches,
and inference/scoring is fast.

Disadvantages of a decision tree

As everything in life comes with advantages and disadvantages, the same is true for
decision trees. There are quite a few severe disadvantages of individual decision
trees, which should make you feel like never using a single decision tree classifier in
your ML pipeline. The main weakness of a decision tree is that the tree is fitted on all
training samples and hence is very likely to overfit. The reason for this is that the model
itself tends to build complex if-else trees to model a continuous function. Another
important point is that finding the optimal decision tree even for simple concepts is
an NP-hard problem (lesser-known as a nondeterministic polynomial time-hard
problem). Therefore, it is solved through heuristics and the resulting single decision is
usually not the optimal one.

Overfitting is bad – very bad – and leads to a serious complication in machine learning.
Once a model overfits, it doesn't generalize well and hence has very poor performance
on unseen data. Another related problem is that small changes in the training data can
lead to very different nested trees and hence, the training convergence is unstable.
Single decision trees are extremely prone to overfitting. On top of that, a decision tree
is very likely to be biased toward the training class with the largest number of samples.

You can overcome the disadvantages of single trees, such as overfitting, instability, and
non-optimal trees, by combining multiple decision trees through bagging and boosting
to an ensemble model. There are also many tree-based optimizations like tree pruning
to improve generalization. Popular models using these techniques are random forests
and gradient boosted trees, which overcome most of the problems of an individual
decision tree while keeping most of their benefits. We will look at these two methods in
the next section.

Note

There are some more fundamental disadvantages that sometimes come up
even with tree-based ensemble methods that are worth mentioning. Due to the
nature of decision trees, tree-based models have difficulties learning complicated
functions, such as the XOR problem. For these problems, it's better to use neural
networks and deep learning approaches.

Working with tree-based ensemble classifiers | 219

Combining classifiers with bagging

One key disadvantage of a single decision tree is overfitting to training data and hence
poor generalization performance and instability due to small changes in the training
data. A bagging (also called bootstrap aggregation) classifier uses the simple concept
of combining multiple independent models into a single ensemble model trained on
a subset of the training data (random picks with replacement) to overcome this exact
problem. The output is either selected through a majority vote for classification or
mean aggregation for regression problems.

By combining independent models, we can reduce the variance of the combined model
without increasing the bias and hence greatly improve generalization. However, there
is another great benefit of using individual models, parallelization. Due to the fact that
each individual model uses a random subset of the training data, the training process
can easily be parallelized and split into multiple compute nodes. Therefore, bagging is
a popular technique when training a large number of tree-based classifiers on a large
dataset.

Figure 7.2 shows how each classifier is trained independently on the same training
data—each model uses a random subset with replacements. The combination of all
individual models makes up the Ensemble Model:

Figure 7.2: Ensemble model

220 | Building ML models using Azure Machine Learning

Bagging can be used to combine any ML model; however, it is often used with tree-
based classifiers as they suffer most from overfitting. The idea of random forest builds
on top of the bagging method combined with a random subset of features for each
split (decision). When a feature is selected at random, the optimal threshold for the
split is computed such that a certain information criterion is optimized (usually GINI or
information gain). Hence the random forest uses a random subset of the training data,
random feature selection, and an optimal threshold for the split.

Random forests are widely used for their simple decision tree-based model combined
with much better generalization and easy parallelization. Another benefit of taking a
random subset of features is that this technique also works really well with very high-
dimensional inputs. Hence, when dealing with classical ML approaches, random forests
are often used for large-scale tree ensembles.

Another popular tree-based bagging technique is the extra-trees (extremely
randomized trees) algorithm, which adds another randomization step on the split
dimension. For each split, thresholds are drawn at random and the best one is selected
for that decision. Hence, in addition to random features, extra-trees also uses random
split thresholds to further improve generalization.

Figure 7.3 shows how all tree ensemble techniques are used for inferencing. Each tree
computes an individual score while the result of each tree is aggregated to yield the
final result:

Figure 7.3: Inferencing using a tree ensemble

Working with tree-based ensemble classifiers | 221

You can find tree-based bagging ensembles such as random forest, and sometimes also
extra-trees, in many popular ML libraries, such as scikit-learn, Spark MLlib, ML.NET,
and many others.

Optimizing classifiers with boosting rounds

Often in computer science problems, we can replace a random greedy approach with a
more complex but more optimal approach. The same holds true for tree ensembles and
builds the foundation for boosted tree ensembles.

The basic idea behind boosting is quite simple:

1. We start to train an individual model on the whole training data.

2. Then we compute the predictions of the model on the training data and start
weighting training samples that yield a wrong result higher.

3. Next, we train another decision tree using the weighted training set. We then
combine both decision trees into an ensemble and again predict the output classes
for the weighted training set. As you might have guessed, we further increase the
weights on the wrongly classified training samples for the next boosting round.

4. We continue this algorithm until a stopping criterion is reached.

Figure 7.4 shows how the training error using boosting optimization decreases each
iteration (boosting round) with the addition of a new tree:

Figure 7.4: Optimizing classifiers with boosting rounds

222 | Building ML models using Azure Machine Learning

The first boosting algorithm was AdaBoost, which combined multiple weak models into
an ensemble by fitting it on a weighted training set that adapts each iteration through
a learning rate. The notion of this approach was to add individual trees that focus on
predicting something the previous trees couldn't predict.

One particular successful technique of boosting is gradient boosted trees (or gradient
boosting). In gradient boosting, you combine the gradient descent optimization
technique with boosting in order to generalize boosting to arbitrary loss functions.
Now, instead of tuning the dataset samples using weights, we can compute the gradient
of the loss function and select the optimal weights—the ones that minimize the loss
function—during each iteration. Thanks to the usage of optimization, this technique
yields very good results, adding to the existing advantages of decision trees.

Gradient boosted tree-based ensembles are included in many popular ML libraries such
as scikit-learn, Spark ML, and others. However, some individual implementations, such
as XGBoost and LightGBM, have gained quite a lot of popularity and are available as
standalone libraries and as plugins for scikit-learn and Spark.

Training an ensemble classifier model using LightGBM
Both random forest and gradient boosted trees are pretty powerful ML techniques
due to their simple basis of decision trees and ensembles of multiple classifiers. In this
example, we will use a popular library from Microsoft to implement both techniques on
a test dataset: LightGBM, a framework for gradient boosting that incorporates multiple
tree-based learning algorithms.

For this section, we will follow a typical best-practice approach using Azure Machine
Learning and perform the following steps:

1. Register the dataset in Azure.

2. Create a remote compute cluster.

3. Implement a configurable training script.

4. Run the training script on the compute cluster.

5. Log and collect the dataset, parameters, and performance.

6. Register the trained model.

Before we start with this exciting approach, we'll take a quick look at why we chose
LightGBM as a tool for training bagged and boosted tree ensembles.

Training an ensemble classifier model using LightGBM | 223

LightGBM in a nutshell

LightGBM uses many optimizations of classical tree-based ensemble techniques to
provide excellent performance on both categorical and continuous features. The latter
is profiled using a histogram-based approach and converted into discrete bins of
optimal splits, which reduces memory consumption and speeds up training. This makes
LightGBM faster and more memory efficient than other boosting libraries that use
pre-sort-based algorithms for computing splits, and hence is a great choice for large
datasets.

Another optimization in LightGBM is that trees are grown vertically, leaf after leaf,
whereas other similar libraries grow trees horizontally, layer after layer. In a leaf-wise
algorithm, the newly added leaf always has the largest decrease in loss. This means that
these algorithms tend to achieve less loss compared to level-wise algorithms. However,
greater depth also results in overfitting, and therefore you must limit the maximum
depth of each tree. Overall, LightGBM produces great results using default parameters
on a large set of applications.

In Chapter 6, Advanced feature extraction with NLP, we learned a lot about categorical
feature embedding and extracting semantic meanings from textual features. We looked
at common techniques for embedding nominal categorical variables, such as label
encoding and one-hot encoding, and others. However, to optimize the split criterion
in tree-based learners for categorical variables, there are better encodings to produce
optimal splits. Therefore, we don't encode categorical variables at all but simply tell
LightGBM which of the used variables are categorical.

One last thing to mention is that LightGBM can take advantage of GPU acceleration,
and training can be parallelized both in a data-parallel or model-parallel way. We will
learn more about distributed training in Chapter 10, Distributed machine learning
on Azure. However, keep in mind that LightGBM is a great choice for a tree-based
ensemble model especially for very large datasets.

We will use LightGBM with the lgbm namespace throughout this book. We can then call
different methods from the namespace directly by typing four characters less—a best-
practice approach among data scientists in Python:

import lightgbm as lgbm

Construct a LGBM dataset

lgbm.Dataset(..)

Train a LGBM predictor

clf = lgbm.train(..)

224 | Building ML models using Azure Machine Learning

What is interesting to note is that all algorithms are trained via the lgbm.train()
method and we use different parameters to specify algorithm, application type, and loss
function, as well as additional hyperparameters for each algorithm. LightGBM supports
multiple decision-tree based ensemble models for bagging and boosting. These are the
options of algorithms that you can choose from as well as their names to identify them
for the boosting parameter:

• gbdt: Traditional gradient boosting decision tree

• rf: Random forest

• dart: Dropouts meet multiple additive regression trees

• goss: Gradient-based one-side sampling

The first two options, namely gradient boosting decision tree (gbdt)—which is the
default choice of LightGBM—and random forest (rf) are classical implementations of
the boosting and bagging techniques, explained in the first section of this chapter, with
LightGBM specific optimizations. The other two techniques, dropouts meet multiple
additive regression trees (dart) and gradient-based one-side sampling (goss), are
specific to LightGBM and provide more optimizations for better results in a trade-off
for training speed.

The objective parameter—which is one of the most important parameters—specifies
the application type of the model, and hence the ML problem you're trying to solve. In
LightGBM, you have the following standard options, which are similar to most other
decision-tree based ensemble algorithms:

• regression: For predicting continuous target variables

• binary: For binary classification tasks

• multiclass: For multiclass classification problems

Besides the standard choices, you can also choose between the following more
specific objectives: regression_l1, huber, fair, poisson, quantile, mape, gamma, tweedie,
multiclassova, cross_entropy, cross_entropy_lambda, lambdarank, and rank_xendcg.

Training an ensemble classifier model using LightGBM | 225

Directly related to the objective parameter of the model is the choice of loss function
to measure and optimize the training performance. Also here, LightGBM gives us the
default options that are also available in most other boosting libraries, which we can
specify via the metric parameter:

• mae: Mean absolute error

• mse: Mean squared error

• binary_logloss: Loss for binary classification

• multi_logloss: Loss for multi-classification

Apart from these loss metrics, other metrics are supported as well, such as rmse,
quantile, mape, huber, fair, poisson, and many others. In our classification scenario, we
will choose dart (dropouts meet multiple additive regression trees), with the binary
objective and binary_logloss metric.

Note

You can also use older versions of the LightGBM algorithm as an sklearn
estimator. To do so, call the LGBMModel, LGBMClassifier, or LGBMRegressor model
from the lightgbm namespace. However, the latest features are only available
through the LightGBM interface: clf = lgbm.LGBMModel().

Now, knowing how to use LightGBM, we can start with the implementation of the data
preparation and authoring script.

Preparing the data

In this section, we will read and prepare the data and register the cleaned data as a
new dataset in Azure Machine Learning. This will allow us to access the data from any
compute target connected with the workspace without the need to manually copy data
around, mount disks, or set up connections to datastores. All of the setup, scheduling,
and operations will be done from an authoring environment—a Jupyter notebook on a
compute instance of Azure Machine Learning.

226 | Building ML models using Azure Machine Learning

For the classification example, we will use the Titanic dataset, a popular dataset for
machine learning practitioners to predict the binary survival probability for each
passenger on the Titanic. The features of this dataset describe the passengers and
contain the following attributes: passenger ID, class, name, sex, age, number of siblings
or spouse on the ship, number of children or parents on the ship, ticket identification
number, fare, cabin number, and embarked port.

Note

The details about this dataset, as well as the complete preprocessing pipeline, can
be found in the source code that comes with this book.

Without knowing any more details, we'll roll up our sleeves and set up the workspace
and experiment in an Azure Machine Learning compute instance:

1. We import Workspace and Experiment from azureml.core and specify the name
titanic-lgbm for this experiment:

from azureml.core import Workspace, Experiment

Configure workspace and experiment
ws = Workspace.from_config()
exp = Experiment(workspace=ws, name="titanic-lgbm")

2. Next, we load the dataset using pandas, and start cleaning and preprocessing the
data:

import pandas as pd

Read the data
df = pd.read_csv('data/titanic.csv')

Transform attributes
df.loc[df['Sex'] == 'female', 'Sex'] = 0
df.loc[df['Sex'] == 'male', 'Sex'] = 1

Perform all data pre-paraption, feature extraction and cleaning
...

Register the data
df_to_dataset(ws, df, 'titanic_cleaned',
 'data/titanic_cleaned.csv')

Training an ensemble classifier model using LightGBM | 227

In the preceding example, we replaced the values of the Sex feature with labels 0
and 1. Ultimately, we take the pandas DataFrame and register the dataset as a newly
cleaned dataset with the name titanic_cleaned. We write a small utility function,
df_to_dataset(), which will help us to store pandas DataFrames and register
them as Azure datasets, in order to reuse them with ease anywhere in the Azure
Machine Learning environment.

3. Then, we register a new version for the dataset:

import os
from azureml.core import Dataset

def df_to_dataset(ws, df, name, data_dir='./data'):
 data_path = os.path.join(data_dir, "%s.csv" % name)

save data to disk
df.to_csv(data_path)

get the default datastore
datastore = ws.get_default_datastore()

upload the data to the datastore datastore.upload(src_dir=data_dir,
target_path=data_dir)

create a dataset
dataset = Dataset.Tabular.from_delimited_files(
 datastore.path(data_path))

register the dataset
dataset.register(workspace=ws, name=name,
 create_new_version=True)
return dataset

The first step in the preceding function is to save the cleaned and preprocessed
pandas DataFrame to disk. Next, we retrieve a reference to the default datastore of
our ML workspace—this is the Azure Blob Storage that was created when we first
set up the workspace. Next, we upload the dataset to this default datastore, just to
reference it from there using a tabular dataset. This dataset holds the reference to
the Azure datastore, and hence we can call the register(create_new_version=True)
method.

228 | Building ML models using Azure Machine Learning

4. Once the preceding steps are done, the dataset is registered in Azure and can be
accessed anywhere in the Azure Machine Learning workspace. If we now go to the
UI and click on the Datasets menu, we will find the titanic_cleaned dataset. In the
UI, we can also easily inspect and preview the data as shown in Figure 7.5:

Figure 7.5: The Datasets preview in the Azure Machine Learning workspace

Note

One thing worth mentioning is that we will first encode categorical variables to
integers using label encoding, but later tell LightGBM which variables contain
categorical information in the numeric columns. This will help LightGBM to treat
these columns differently when computing the histogram and optimal parameter
splits.

Training an ensemble classifier model using LightGBM | 229

The great benefit of having the dataset registered is that we can now simply
run the following snippet to retrieve the dataset as a pandas DataFrame in any
execution environment in Azure Machine Learning:

from azureml.core import Dataset

Get a dataset by name
df = Dataset.get_by_name(workspace=ws,
 name='titanic_cleaned').to_pandas_dataframe()

The preceding code can now be placed in any training script that is scheduled in
Azure Machine Learning or anywhere with access to the Azure Machine Learning
workspace and it will return the cleaned dataset. Moreover, the data is versioned, and
hence starting from now, data engineers and data scientists can work in parallel on the
same version of the dataset. Let's create a cluster that we can finally train a LightGBM
classifier on.

Setting up the compute cluster and execution environment

Before we can start training the LightBGM classifier, we need to set up our training
environment, and also our training cluster and training image with all the required
Python libraries. For this ML model, we choose a CPU cluster with up to four nodes of
type STANDARD_D2_V2. To do so, we call two helper functions, which we will define in a
second:

1. First, we create the Azure Machine Learning compute cluster and then configure a
Python image with all the required pip packages, including lightgbm:

Create a compute cluster
aml_cluster = get_aml_cluster(ws,
 cluster_name="amldemocompute", vm_size="STANDARD_D2_V2")

Create a remote run configuration
run_amlcompute = run_config(aml_cluster, [
 'numpy', 'pandas', 'matplotlib', 'seaborn', 'scikit-learn', 'lightgbm'
])

The two functions used in the preceding snippets are very useful. The longer you
work with Azure Machine Learning, the more abstractions you will build to easily
interact with Azure Machine Learning.

230 | Building ML models using Azure Machine Learning

2. We then retrieve an existing cluster, or create a new cluster, and return the cluster
once it is started:

from azureml.core.compute import ComputeTarget, AmlCompute
from azureml.core.compute_target import ComputeTargetException

def get_aml_cluster(ws, cluster_name,
 vm_size='STANDARD_D2_V2', max_nodes=4)
try:
 cluster = ComputeTarget(workspace=ws, name=cluster_name)
except ComputeTargetException:
 compute_config = AmlCompute.provisioning_configuration(
 vm_size=vm_size, max_nodes=max_nodes)
 cluster = ComputeTarget.create(ws, cluster_name,
 compute_config)
cluster.wait_for_completion(show_output=True)
return cluster

We have already seen the preceding script in the previous chapters, where we
called AmlCompute.provisioning_configuration() to provision a new cluster. It is
extremely helpful that you can define all your infrastructure within your authoring
environment. The same is true for your Python interpreter and packages.

3. Next, we configure the run_config() function to return a remote execution target
with a Python configuration:

from azureml.core.runconfig import RunConfiguration
from azureml.core.conda_dependencies import CondaDependencies
from azureml.core.runconfig import DEFAULT_CPU_IMAGE

def run_config(target, packages=None):
 packages = packages or []
 config = RunConfiguration()
 config.target = target
 config.environment.docker.enabled = True
 config.environment.docker.base_image = DEFAULT_CPU_IMAGE

Training an ensemble classifier model using LightGBM | 231

azureml_pip_packages = [
 'azureml-defaults', 'azureml-contrib-interpret',
 'azureml-core', 'azureml-telemetry',
 'azureml-interpret', 'sklearn-pandas', 'azureml-dataprep'
]
config.auto_prepare_environment = True config.environment.python.user_
managed_dependencies = False
config.environment.python.conda_dependencies =
 CondaDependencies.create(
 pip_packages=azureml_pip_packages + packages)

return config

In the preceding script, we set a couple of options on the RunConfiguration
objects, such as to enable Docker and to specify the Azure Machine Learning
default CPU image. Then, we defined the required packages for Azure Machine
Learning, such as the core, defaults, and dataprep packages. Finally, we added all
custom-defined packages and passed them to the pip_packages argument.

Using the preceding configuration, Azure Machine Learning will set up the proper
Docker images and register them in the Container Registry automatically for us—as
soon as we schedule a job using this configuration. Let's first construct the training
script and then schedule it to the cluster. It's quite cool to see that you can spin up an
auto-scaling compute cluster and your custom Docker execution environments with all
but two function calls and a couple of lines of code.

Let's take a look at the training script that we can then schedule on the newly
created cluster.

232 | Building ML models using Azure Machine Learning

Building a LightGBM classifier

Now that we have the dataset ready, and we've set up the environment and cluster for
the training of the LightGBM classification model, we can set up the training script. The
code from the preceding section was written in a Jupyter notebook. The following code
in this section will now be written and stored in a Python file called train_lgbm.py. We
will start building the classifier using the following steps:

1. Let's start again with the basics of Azure Machine Learning. We configure run and
extract the workspace configuration from run. Then, we can reference the cleaned
dataset and load it to memory using the to_pandas_dataframe() method:

from azureml.core import Dataset, Run

Load the current run and ws
run = Run.get_context()
ws = run.experiment.workspace

Get a dataset by name
dataset = Dataset.get_by_name(workspace=ws, name='titanic_cleaned')

Load a TabularDataset into pandas DataFrame
df = dataset.to_pandas_dataframe()

2. Having loaded the dataset as a pandas DataFrame, we can now start splitting the
training data into training and validation sets. We will also split the target variable,
Survived, from the training dataset into its own variable:

import lightgbm as lgbm
from sklearn.model_selection import train_test_split

Target labels
y = df.pop('Survived')

Train / validation split
X_train, X_test, y_train, y_test = train_test_split(df, y, test_size=0.2,
random_state=42)

3. Next, we tell LightGBM about categorical features—that are actually already
transformed into numeric variables—but need special treatment to compute the
optimal split values:

Training an ensemble classifier model using LightGBM | 233

Convert to LGBM dataset for training
categorical_features = ['Alone', 'Sex', 'Pclass', 'Embarked']
train_data = lgbm.Dataset(data=X_train, label=y_train,
 categorical_feature=categorical_features, free_raw_data=False)
test_data = lgbm.Dataset(data=X_test,
 label=y_test, categorical_feature=categorical_features,
 free_raw_data=False)

In contrast to scikit-learn, we cannot work directly with pandas DataFrames
in LightGBM but need to use a wrapper class, lgbm.Dataset. This will give us
access to all required optimizations and features, such as distributed training,
optimization for sparse data, and meta-information about categorical features.

4. Next, we set up an argument parser to parse command-line parameters into
LightGBM parameters:

parser = argparse.ArgumentParser()
parser.add_argument('--boosting', type=str, dest='boosting',
 default='dart')
parser.add_argument('--num-boost-round', type=int,
 dest='num_boost_round', default=500)
parser.add_argument('--early-stopping', type=int,
 dest='early_stopping_rounds', default=200)
parser.add_argument('--drop-rate', type=float,
 dest='drop_rate', default=0.15)
parser.add_argument('--learning-rate', type=float,
 dest='learning_rate', default=0.001)
parser.add_argument('--min-data-in-leaf', type=int,
 dest='min_data_in_leaf', default=20)
parser.add_argument('--feature-fraction', type=float,
 dest='feature_fraction', default=0.7)
parser.add_argument('--num-leaves', type=int,
 dest='num_leaves', default=40)
args = parser.parse_args()

Note

This is not really required in the beginning, but we strongly advise to make your
training scripts configurable. If you use the preceding method to pass arguments
to your training scripts, you will be able to automatically tune the hyperparameters
without changing a line of code in your training script.

234 | Building ML models using Azure Machine Learning

5. Having parsed the command-line arguments, we now pass them into a parameter
dictionary, which will then be passed to the LightGBM training method:

lgbm_params = {
 'application': 'binary',
 'metric': 'binary_logloss',
 'learning_rate': args.learning_rate,
 'boosting': args.boosting,
 'drop_rate': args.drop_rate,
 'min_data_in_leaf': args.min_data_in_leaf,
 'feature_fraction': args.feature_fraction,
 'num_leaves': args.num_leaves,
}

6. In order to keep track of all our experiments, and which parameters were used for
training, we are tracking the parameters by logging them with the run method.
This will attach all the parameters to each run we execute and will be extremely
helpful in the future:

Log the parameters
for k, v in lgbm_params.items():
 run.log(k, v)

Gradient boosting is an iterative optimization approach with a variable number of
iterations and an optional early stopping criterion. Therefore, we also want to log
all metrics for each iteration of the training script. Throughout this book, we will
use a similar technique for all ML frameworks—namely, using a callback function
that logs all available metrics to your Azure Machine Learning workspace. Let's
write such a function using LightGBM's specification for custom callbacks.

7. Here, we create a callback object, which iterates over all the evaluation results
and logs them for run:

def azure_ml_callback(run):
 def callback(env):
 if env.evaluation_result_list:
 for data_name, eval_name, result, _ in
 env.evaluation_result_list:
 run.log("%s (%s)" % (eval_name, data_name), result)
callback.order = 10
return callback

Training an ensemble classifier model using LightGBM | 235

8. After we have set the parameters for the LightGBM predictor, we can configure
the training and validation procedure using the lgbm.train() method. We need to
supply all arguments, parameters, and callbacks:

clf = lgbm.train(train_set=train_data,
 params=lgbm_params,
 valid_sets=[train_data, test_data],
 valid_names=['train', 'val'],
 num_boost_round=args.num_boost_round,
 early_stopping_rounds=args.early_stopping_rounds,
 callbacks = [azure_ml_callback(run)])

What's great about the preceding code is that by supplying the generic callback
function, all training and validation scores will be logged to Azure automatically.
Hence we can follow the training iterations in real time either in the UI or via
the API—for example, inside a Jupyter widget that automatically collects all run
information.

9. In order to evaluate the final score of the training, we use the trained classifier to
predict a couple of default classification scores, such as accuracy, precision, and
recall, as well as the combined f1 score:

from sklearn.metrics import accuracy_score, recall_score,
precision_score, f1_score

y_pred = clf.predict(X_test)
run.log("accuracy (test)", accuracy_score(y_test, y_pred))
run.log("precision (test)", precision_score(y_test, y_pred))
run.log("recall (test)", recall_score(y_test, y_pred))
run.log("f1 (test)", f1_score(y_test, y_pred))

We could already run the script and see all metrics and the performance of the
model in Azure. But this was just the start – we want more!

10. Let's compute feature importance and track a plot of it and run it in Azure
Machine Learning. That's easy – we can do this in a few lines of code:

import matplotlib.pyplot as plt
fig = plt.figure()
ax = plt.subplot(111)
lgbm.plot_importance(clf, ax=ax)
run.log_image("feature importance", plot=fig)

Once this snippet is added to the training script, each training run will also store
a feature importance plot. This is really helpful to see how different metrics
influence feature importance.

236 | Building ML models using Azure Machine Learning

11. There is one more step we would like to add. Whenever the training script runs,
we want to upload the trained model and register it in the model registry. By doing
so, we can later take any training run and manually or automatically deploy the
model to a container service. However, this can only be done by saving the training
artifacts of each run:

from sklearn.externals import joblib
joblib.dump(clf, 'outputs/lgbm.pkl')
run.upload_file('lgbm.pkl', 'outputs/lgbm.pkl')
run.register_model(
 model_name='lgbm_titanic', model_path='lgbm.pkl')

In the preceding snippet, we use the joblib object from the sklearn.externals
package to save the classifier to disk. While LightGBM provides its own
functionality for exporting and importing models, we prefer using the sklearn
library for reproducible results across multiple Python versions.

That's it – we have written the whole training script. It's not extremely long, it's not
super- complicated. The trickiest part is understanding how to pick some of the
parameters of LightGBM and understanding gradient boosting in general—and that's
why we dedicated the first half of the chapter to that topic. Let's fire up the cluster and
submit the training script.

Scheduling the training script on the Azure Machine Learning cluster

We are logically jumping back to the authoring environment, the Jupyter Notebook.
The code from the previous section is stored as a train_lgbm.py file, and we'll now get
ready to submit it to the cluster. One great thing is that we made the training script
configurable via command-line arguments, so we can tune the base parameters of the
LightGBM model using CLI arguments. In the following steps, we will configure the
authoring script to execute the training process:

1. Let's define the parameters for this model—we will use dart, with a standard
learning rate of 0.01 and a dropout rate of 0.15:

script_params = [
 '--boosting', 'dart',
 '--learning-rate', '0.01',
 '--drop-rate', '0.15',
]

We specified the boosting method, dart. As we learned in the previous section, this
technique performs very well but is not extremely performant and is a bit slower
than the other options—gbdt, rf, and goss.

Training an ensemble classifier model using LightGBM | 237

Note

This is also the same way that hyperparameters are passed by HyperOpt—the
hyperparameter tuning tool in Azure Machine Learning—to the training script. We
will learn a lot more about this in Chapter 9, Hyperparameter tuning and Automated
Machine Learning.

2. Next, we can finally pass the parameters to ScriptRunConfig and kick off the
training script. Let's bring all the pieces together:

from azureml.core import ScriptRunConfig

script = 'train_lightgbm.py'
script_folder = os.getcwd()

src = ScriptRunConfig(
 source_directory=script_folder,
 script=script,
 run_config=run_amlcompute,
 arguments=script_params)

In the preceding code, we specify the file of our classifier, which is stored relative
to the current authoring script. Azure Machine Learning will upload the training
script to the default datastore, and make it available on all cluster nodes that run
the script.

3. Finally, let's submit the run configuration and execute the training script:

from azureml.widgets import RunDetails

run = exp.submit(src)
RunDetails(run).show()

The RunDetails method gives us a nice interactive widget with real-time logs
of the remote computing service. We can see the cluster getting initialized and
scaled up, the Docker images getting built and registered, and ultimately, also the
training script logs.

Note

If you prefer other methods than an interactive Jupyter widget, you can also trail
the logs using run.wait_for_completion(show_output=True) or print(run.
get_portal_url()) to get the URL to the experiment run in Azure.

238 | Building ML models using Azure Machine Learning

4. Let's switch over to the Azure Machine Learning UI and look for the run in the
experiment. Once we click on it, we can navigate to the Metrics section and find a
nice overview of all our logged metrics. It's great to see in Figure 7.6, how metrics
that are logged multiple times with the same name get converted into vectors and
displayed as line charts:

Figure 7.6: The Metrics tab in the Azure Machine Learning workspace,
showing the logged metrics of the running experiment

Training an ensemble classifier model using LightGBM | 239

Then, click on the Images section. As we expect, when we do so, we are presented with
the feature importance that we created in the training script. Figure 7.7 shows how this
looks in the Azure Machine Learning UI:

Figure 7.7: The Images tab in the Azure Machine Learning workspace,
showing the feature importance of the running experiment

We saw how one can train a LightGBM classifier in Azure Machine Learning, taking
advantage of an auto- scaling Azure Machine Learning compute cluster. Logging
metrics, figures, and parameters keeps all information about the training run in a single
place. Together with saving snapshots of the training script, outputs, logs, and the
trained model, this is invaluable for any professional, large-scale ML project.

What you should remember from this chapter is that gradient boosted trees are a very
performant and scalable classical ML approach, with many great libraries, and support
for distributed learning and GPU acceleration. LightGBM is one alternative offered by
Microsoft that is well embedded in both the Microsoft and open source ecosystem. If
you have to choose a classical, fast, and understandable approach, our advice is to go
with LightGBM.

240 | Building ML models using Azure Machine Learning

Summary
In this chapter, you learned how to build a classical ML model in Azure Machine
Learning.

You learned about decision trees, a popular technique for various classification and
regression problems. The main strengths of decision trees are that they require little
data preparation as they work well on categorical data and different data distributions.
Another important benefit is their interpretability, which is especially important for
business decisions and users. This helps you to understand when a decision-tree-based
ensemble predictor is appropriate to use.

However, we also learned about a set of weaknesses, especially regarding overfitting
and poor generalization. Luckily, tree-based ensemble techniques such as bagging
(bootstrap aggregation) and boosting help to overcome these problems. While bagging
has popular methods such as random forests that parallelize very well, boosting—
especially gradient boosting—has efficient implementations such as XGBoost and
LightGBM.

You implemented and trained a decision tree-based classifier in Azure Machine
Learning using the LightGBM library. LightGBM is developed at Microsoft and
delivers great performance and training time through a couple of optimizations.
These optimizations help LightGBM to keep a small memory footprint, even for
larger datasets, and yield better losses with fewer iterations. You used Azure Machine
Learning not only to execute your training script but also to track your model's training
performance, and the final classifier.

In the following chapter, we will take a look at some popular deep learning techniques
and how to train them using Azure Machine Learning.

In the previous chapter, we learned how to train and score classical machine learning
(ML) models using non-parametric tree-based ensemble methods. While these methods
work well on many small and medium-sized datasets with categorical variables, they
don't generalize well on large datasets.

In this chapter, we will train complex parametric models using deep learning (DL) for
even better generalization with large datasets. This will help you understand which
situations Deep Neural Networks (DNNs) perform better in than traditional models.

First, we will give a short and practical overview of why and when DL works well. We
will focus more on understanding the general principles and rationale rather than a
theoretical approach. This will help you to assess which use cases and datasets have a
need for DL and how it works in general.

Training deep neural
networks on Azure

8

244 | Training deep neural networks on Azure

We will then take a look at the most popular application domain for DL—computer
vision. Then, we will train a simple Convolutional Neural Network (CNN) architecture
for image classification using Azure Machine Learning and additional Azure
infrastructure. We will compare the performance to a model that was fine-tuned on a
pre-trained Residual Network (ResNet) model. This will show you how to overcome
situations where not enough training data is provided.

The following topics will be covered in this chapter:

• Introduction to deep learning

• Training a CNN for image classification

Introduction to deep learning
DL has revolutionized the ML domain recently and is constantly outperforming
classical statistical approaches, and even humans, in various tasks, such as image
classification, object detection, segmentation, speech transcription, text translation,
text understanding, sales forecasting, and much more. In contrast to classical models,
DL models use many millions of parameters, clever weight sharing, optimization
techniques, and implicit feature extraction to outperform all previously hand-crafted
feature detectors and ML models when trained with enough data.

In this section, we will help you understand why and when DL models make sense for
certain domains and datasets. If you are already an expert in DL, feel free to skip this
section and go directly to the more practical sections. However, if you are new to DL,
I strongly encourage you to stay for this section in order to understand the practical
and business need for larger, more capable models, as well as a bit of non-theoretical
background.

Why DL?

Many traditional optimization, classification, and forecasting processes have worked
well over the past years on classical ML approaches, such as k-nearest neighbor, linear/
logistic regression, naive Bayes, and tree-based ensemble models. They worked well on
various types of data (transactional, time-series, operational, and so on) and data types
(binary, numerical, and categorical) for small to mid-sized datasets.

However, in some domains, data generation has exploded and classical ML models
couldn't improve performance even with an increasing amount of training data. This
especially affected the domains of computer vision and natural language processing
(NLP) around late 2010. That's when researchers started to look again into neural
networks (or multilayer perceptrons (MLPs)), a technique used in the late 80s, to
capture the vast amount of features in a large image dataset by using multiple nested
layers.

Introduction to deep learning | 245

The following chart captures this idea pretty well. While traditional ML approaches
work very well on small and medium-sized datasets, their performance does not
improve with more training data. However, DL models are massive parametric models
and can capture a vast amount of detail from training data. Hence, we can see that their
prediction performance increases as the amount of data increases:

Figure 8.1: A chart illustrating prediction performance based on the amount of training data

Traditional models tend to use pre-engineered features and so are optimized for
datasets of various data types and ranges. We saw in the last chapter that gradient-
boosted trees perform extremely well on categorical data. However, in domains with
highly structured data or data of variable lengths, many traditional models reached their
limits. This was especially true for pixel information in two- and three-dimensional
images and videos, as well as waveforms in audio data and characters in text data.
ML models used to process such data would have complex feature extractors, such
as histogram of oriented gradients (HOG) filters, scale-invariant feature transform
(SIFT) features, or Local Binary Patterns (LBPs)—just to name a few.

What makes this data so complicated is that no obvious linear relation between the
input data (for example, a single pixel) and the output exists—seeing a single pixel of
an image won't help, in most cases, to determine the brand of a car in that image.
Therefore, there was an increasing need to train larger and more capable parametric
models that use raw, unprocessed data as input to capture these relations from an input
pixel to a final prediction.

It's important to understand that the need for deeper models with many more
parameters comes from the vastly increasing amount of highly structured training data
in specific domains, such as vision, audio, and language. These new models often have
tens of millions of parameters to capture the massive amounts of raw and augmented
training data and to develop an internal generalized conceptual representation of the
training data. Keep this in mind when choosing an ML approach for your use case.

246 | Training deep neural networks on Azure

In many cases, you can make a direct relation from the data store of your training
data to the ML model. If your data is stored on a SQL database or in Excel files, then
you should usually look into classical ML approaches, such as parametric statistical
(linear regression, SVM, and so on) or non-parametric (decision-tree based ensembles)
approaches. If your data is so big that it is stored in Hadoop Distributed Filesystem
(HDFS), a blob, or a file storage server, then you might need to use a DL approach.

From neural networks to DL

Various sources exist that explain neural networks and how they work in great detail;
for example, Stanford's courses on DL, or Andrew Ng's courses on Coursera, and many
more. This section will provide you with an intuitive understanding of their evolution
from classical perceptrons in the 1950s to artificial neural networks (ANNs) and CNNs
in the 1980s, and to DL in the last decade.

As you might have heard, the foundation of neural networks—the perceptron—is a
concept that is over half a century old. The perceptron was introduced to model a cell
from the human brain as a weighted sum of all inputs and activation functions that fires
if the output is higher than a defined threshold. While this biological analogy of a brain
cell is a great way to model the brain, it is a poor model to describe its internal state and
the transformation of the input signal.

Rather than neurons in the brain, we prefer a much simpler approach to think about the
perceptron, MLPs (that is, ANNs), and CNNs—namely, a very clean, geometric approach.
This method requires you to only understand the equation of a line in two dimensions
and the same equation in a higher-dimensional coordinate space. Hence, the equation
of a plane will be in three dimensions and a hyperplane in n dimensions.

If we look at a single perceptron, it solely describes a weighted sum of its inputs plus
a static bias with an activation function. Do you know what is also described as a
weighted sum of its inputs? A line equation:

Figure 8.2: The line equation

OK, to be fair, this line equation only has a single input (x), hence a single dimension.
However, if x is a vector, the very same equation describes a plane. I am sure you would
have seen this equation at some point in your secondary math curriculum. A nice
property of this equation is that when inserting a point's coordinate into this equation,
it yields 0 = 0, or simply 0 when moved to one side.

Introduction to deep learning | 247

What happens if we add a point into the line equation that is not on the line? Well, the
result will be either positive or negative but certainly not 0. Another nice property of
the line equation is that the absolute value of this result describes the shortest distance
to the line (using the trigonometric formula) and the sign of the result describes the
side of the line. Hence, the point can be either on the left or the right side of the line.

In the Figure 8.3, we see two points and their distance to the line. If we insert both
points' coordinates into the two-dimensional equation of a line, then one point would
result in a positive distance, whereas the other point would result in a negative distance
from the line:

Figure 8.3: The shortest distance between a point and a line

Let's assume we would first insert a point's coordinates into a line equation and then
apply the result with a step function between -1 and 1, or simply the sign function. The
result would tell us which side of the line the point lies on. This is a fantastic geometric
description of the perceptron or a very simple classifier. The trained perceptron is
equal to the line equation (actually a hyperplane), which separates a space into left and
right. So, this line is the decision boundary for a classification. A point is an observation.
By inserting a point into the line equation and applying the step function, we return the
resulting class of the observation, which is left or right. This exactly describes a binary
classifier.

However, it gets even better. How do we train such a decision boundary? Well, we look
at the training samples and the distance from the samples to a randomly initialized
decision boundary. Then, we move the decision boundary in a way that the sample
is classified correctly. We then look at the next sample and continue this process.
The optimal vector to move the decision boundary is if we move it along the negative
gradient, such that the distance between the point and the line reaches a minimum.
By using a learning rate factor, we iterate this process a few times and end up with a
perfectly aligned decision boundary, if the training samples are linearly separable.

248 | Training deep neural networks on Azure

Therefore, a single perceptron (also called a neuron) plus an activation function
simply describes a small classifier consisting of a hyperplane that defines the
decision boundary. Multiple perceptrons stacked in parallel layers are simply multiple
hyperplanes combined—for example, they are used to find a sample that is on the right
side of the first line but on the left side of a second line.

While a single stack of perceptrons only describes a linear combination of inputs and
outputs, researchers began to stack these perceptrons into multiple consecutive layers,
where each layer was followed by an activation function. This is called MLP, or simply a
neural network. While it is quite difficult to understand this multi-layer approach from
a biological standpoint, we can again use our geometric model. In a geometric model,
we would simply stack multiple hyperplane equations into more complicated objects.

This exact geometric phenomenon is also described by many other resources as higher-
level features of DL models. While the first layers of a network describe very low-level
features, such as the left or right side of a line (an edge), the higher levels describe
complicated nested combinations of these low-level features; for example, four lines
build a square, five squares build a shape, and a combination of those shapes looks like a
human nose. Hence, we just built a nose detector using a 3 layer neural network.

In Figure 8.4, we visualize how a DNN sees an image in the individual layers and tries
to match it to features that each layer has learned. The image on the left is the original
image and the three images on the right show a representation of this image in a
specific layer in a DNN. We can see how the earlier layer focuses mostly on lines and
edges (the second image from the left), whereas the middle layer sees shapes (the third
image from the left), and the last layer activates on specific high-level features in the
image (the fourth image from the left):

Figure 8.4: The minimized loss of an input image for individual layers

Using multiple high-dimensional hyperplane equations, where each output feeds into
each input of the following layer, requires a very high number of parameters. While a
high number of parameters is required to model a massive amount of complex training
data, a so-called fully connected neural network is not the best way to describe these
connections. So, what's the problem?

Introduction to deep learning | 249

In a fully connected network, each output is fed to each neuron of the consecutive layer
as input. In each neuron, we require a weight for each input, and therefore, as many
weights as input dimensions. This number quickly explodes when we start stacking
multiple layers of perceptrons. Another problem is that the network cannot generalize
because it learns individual weights for individual dimensions.

To fight this problem, CNNs were introduced. Their purpose was to reduce the number
of connections and hence parameters on a single layer to a fixed set of parameters,
independent of the number of input dimensions. Therefore, the parameters of the
layer are now shared within all the inputs. The idea of this approach came from signal
processing, where filters are applied to a signal through a convolution operation.
Convolution means applying a single set of weights, such as a window function, to
multiple regions of the input and later summing up all signal responses of the filter for
each location.

This was the same idea for convolution layers on CNNs. By using a fixed-sized filter that
is convolved with the input, we can greatly reduce the number of parameters for each
layer and so add more nested layers to the network. By using a so-called pooling layer,
we can also reduce the image size and apply filters to a downscaled version of the input.
As we stated earlier, this was all developed in the 80s.

There were three reasons why CNNs didn't reach a similar hype in the 80s as they did in
the late 2010s:

• Only a small amount of labeled training data was available

• Convergence of the training process was difficult due to exploding and
vanishing gradients

• Computational performance was low

However, when researchers looked into those models in 2012, a massive amount
of labeled image training data was available through the ImageNet project; high-
performance parallel processing was possible through GPUs, even for desktop
machines, and some final tweaks, such as normalization and rectifiers, helped the
training process to converge.

From then on, researchers started doing the following:

• Stacking more layers horizontally (see ResNet-152) and vertically (see GoogLeNet)

• Developing more efficient layer groups (SqueezeNet, Inception v3, and so on)

• Developing new layers (LSTM, and so on) as well as training (GAN)

• Optimizing techniques (RMSProp, Adam, and so on)

Today, DL is applied in almost any domain where there is sufficient data at hand.

250 | Training deep neural networks on Azure

Comparing classical ML and DL

Let's take a look at the main differences between classical ML and DL approaches and
find out what DL models do with so many more parameters and how they benefit from
them.

When we look at the image or audio processing domain before 2012, ML models were
usually not trained on the raw data itself. Moreover, the raw data went through a
manually crafted feature extractor to be converted into a lower-dimensional feature
space. If we are dealing with images of 256 x 256 x 3 dimensions (RGB)—which
corresponds to a 196,608- dimensional feature space—and convert these to, say, a
2,048-dimensional feature embedding as input for the ML models, we greatly reduce
the computational requirements for these models. Interestingly, the extracted image
and audio features often used a convolution operator and a specific filter (such as edge
detector, blob detector, spike/dip detector, and so on). However, the filter was usually
constructed manually.

The classical ML models developed in the past 50+ years are still the ones we are
successfully using today. Among those are tree-based ensemble techniques, linear and
logistic regression, support vector machines (SVMs), and MLPs. The MLP model is
also known as a fully connected neural network with hidden layers and still serves as a
classification/regression head in some of the early DL models.

Figure 8.5 shows the typical pipeline of a classical ML approach in the computer vision
domain:

Figure 8.5: The pipeline of a classical ML approach

First, the raw data is converted into a lower-dimensional feature embedding using
hand- crafted image filters (SIFT, SURF, Haar filters, and so on). Then, feature
embedding is used to train an ML model; for example, a multi-layer, fully connected
neural network.

When it is difficult for a human being to express a relationship between an input image
and an output label in simple rules, then it is also difficult for a classical computer
vision and ML approach to learn these rules. The reason for this is that DL models are
trained on raw input data instead of manually extracted features. Due to the fact that
convolution layers are the same as randomized and trained image filters, these filters
for feature extraction are implicitly learned by the network.

Introduction to deep learning | 251

Figure 8.6 shows a DL approach to image classification—similar to the previous diagram
for the classical ML approach:

Figure 8.6: The DL approach to image classification

As we can see, the raw input data of the image is fed directly to the network, which
outputs the final image label. This is why we often refer to a DL model as an end-to-end
model because it creates an end-to-end connection between the input data (literally,
the pixels) and the output data.

Note

A key takeaway is that you should look at the type of data as well before choosing
your ML model. If you are dealing with images, videos, audio, time series, language,
or text, you might use a DL model or feature extractor for embedding, clustering,
classification, or regression. If you are working with operational or business data,
then maybe a classic approach would be a better fit.

In many cases, especially when you have small datasets or not enough compute
resources or knowledge to train end-to-end DL models, you can also reuse a
pre-trained DL model as a feature extractor. This can be done by loading a pre-trained
model and performing a forward pass until the classification/regression head. It returns
a multi-dimensional embedding (a so-called latent space representation) that you can
directly plug in to a classical ML model.

252 | Training deep neural networks on Azure

Here is an example of such a hybrid approach. We use the IncpetionV3 model as a
feature extractor, pre-trained on the imagenet data. The DL model is only used for
transforming the raw input image data into a lower-dimensional feature representation.
Then, an SVM model is trained on top of the image features. Let's look at the source
code for this example:

import numpy as np

from keras.applications import InceptionV3

def extract_features(img_data, IMG_SIZE): IMG_SHAPE =

 (IMG_SIZE, IMG_SIZE, 3)

 model = InceptionV3(input_shape=IMG_SHAPE, include_top=False,
 weights='imagenet', pooling='avg')

 predictions = model.predict(img_data) return
 np.squeeze(predictions)

 labels = [] # loaded previously features =
 extract_features(image_data)

 X_train, X_test, y_train, y_test = train_test_split(features,

 labels) from sklearn.svm import SVC

 clf = SVC(kernel='linear', C=1)

 clf.fit(X_train, y_train)

In the preceding code, we use TensorFlow to load the InceptionV3 model with

the imagenet weights but without any classification or regression head. This is done by
setting the include_top property to False. We then squeeze the output of the prediction
into a single vector. Finally, we train an SVM on the image features using scikit-learn
and a default train/test split.

We started with the classical approach, where feature extraction and ML were
separated into two steps. However, the filters in the classical approach were hand-
crafted and applied directly to the raw input data. In a DL approach, we implicitly learn
the feature extraction.

Training a CNN for image classification | 253

Training a CNN for image classification
Once we have a good understanding of why and when to use DL models, we can start to
actually implement one using Azure Machine Learning. We will start with a task that DL
performed very well with over the past years, computer vision, or more precisely, image
classification. If you feel that this is too easy for you, you can replace the actual training
script with any other computer vision technique and follow along with the steps in this
section:

• First, we will power up an Azure Machine Learning compute instance, which
serves as our Jupyter Notebook authoring environment. We will first write a
training script and execute it in the authoring environment to verify that it works
properly, checkpoints the model, and logs the training and validation metrics.
We will train the model for a few epochs to validate the setup, the code, and the
resulting model.

• Once this is set up, we will try to improve the algorithm by adding data
augmentation to the training script. While this seems like an easy task, I want
to reiterate that this is necessary and strongly recommended for any DL-based
ML approach. Image data can be easily augmented to improve generalization
and therefore model scoring performance. However, through this technique, the
training of the model will take even longer than before because more training data
is used for each epoch.

• In the next step, we move the training script from the authoring environment to a
GPU cluster—a remote compute environment. We will do all this—upload the data,
generate the training scripts, create the cluster, execute the training script on the
cluster, and retrieve the trained model—from within the authoring environment in
Azure Machine Learning. If you are already training ML models yourself on your
own server, then this section will show you how to move your training scripts to
a remote execution environment and how to benefit from dynamically scalable
compute (both vertically and horizontally, hence larger and more machines), auto
scaling, cheap data storage, and much more.

• Once you have successfully trained a CNN from scratch, you want to move on
to the next level in terms of model performance and complexity. A good and
recommended approach is to fine-tune pre-trained DL models rather than train
them from scratch. Using this approach, we can often also use a pre-trained model
from a specific task, drop the classification head (usually the last one or two layers)
from the model and reuse the feature extractor for another task by training our
own classification head on top. This is called transfer learning and is widely used
for training state-of-the-art models for various domains.

Let's dive into it!

254 | Training deep neural networks on Azure

Training a CNN from scratch in your notebook

Let's train a CNN on Jupyter on Azure Machine Learning. As a first step, we want to
simply train a model in the current authoring environment, and so use the compute
(CPU and memory) from the compute instance. This is a standard Python/Jupyter
environment and so it is no different from training an ML model on your local machine.
So, we go ahead and create a new compute instance in our Azure Machine Learning
workspace, and then open the Jupyter environment:

1. Before we begin creating our CNN model, we need some training data. As we
train the ML model on the authoring computer, the data needs to be on the same
machine. For this example, we will use the MNIST image dataset:

import os
import urllib
os.makedirs('./data/mnist', exist_ok=True)

urllib.request.urlretrieve(
'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz', filename =
'./data/mnist/train-images.gz')

urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/train-
labels-idx1-ubyte.gz', filename = './data/mnist/train-labels.gz')

urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/t10k-images-
idx3-ubyte.gz', filename = './data/mnist/test-images.gz')

urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/t10k-labels-
idx1-ubyte.gz', filename = './data/mnist/test-labels.gz')

We can see, in the preceding code, that we load the training and testing data and
put it in the data directory on the current environment where the code executes.
We will see in the subsequent section how to make the data available on any
compute in the ML workspace.

2. Next, we load the data, parse it, and store it in multi-dimensional NumPy arrays.
We use a helper function, load, which is defined in the accompanying source code
of this chapter. We preprocess the training data by normalizing the pixel values to
a range between 0 and 1:

Training a CNN for image classification | 255

X_train = load('./data/mnist/train-images.gz', False) / 255.0 X_test =
load('./data/mnist/test-images.gz', False) / 255.0

y_train = load('./data/mnist/train-labels.gz', True).reshape(-1) y_test =
load('./data/mnist/test-labels.gz', True).reshape(-1)

Using the reshape method, we check that the training and testing labels are one-
dimensional vectors with a single label per training and testing sample.

Note

Once we have the training data, it is time to decide which Python framework to
use to train neural network models. Actually, you should have thought about this
already before starting to write code for your ML experiment. While you are not
limited to any specific framework in Azure Machine Learning, it is recommended
you use either TensorFlow (with Keras) or PyTorch for training neural networks and
DL models. TensorFlow and Keras are great choices when training and deploying
standard models for production.

PyTorch is a great choice for tinkering with exotic models and custom layers
and debugging customized models. In my opinion, PyTorch is a bit easier to get
started with, whereas TensorFlow is more complex and mature and has a bigger
ecosystem. In this chapter, we will use TensorFlow due to its large ecosystem,
Keras integration, great documentation, and good support in Azure Machine
Learning.

3. Having chosen an ML framework, we can start to construct a simple CNN. We use
keras to construct a sequential model:

from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

model = Sequential()
model.add(Conv2D(filters=16, kernel_size=3, padding='same',
activation='relu', input_shape=(28,28,1)))
model.add(MaxPooling2D(pool_size=2))
model.add(Conv2D(filters=32, kernel_size=3, padding='same',
activation='relu'))
model.add(MaxPooling2D(pool_size=2))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dense(10, activation='softmax'))

256 | Training deep neural networks on Azure

In the preceding code, we took advantage of the keras.Sequential model API
to construct a simple CNN model. We go with the default initialization of the
weights and solely specify the model structure here. You can also see the
typical combination of a feature extractor until the Flatten layer, and the MLP
classification head outputting 10 probabilities using the softmax activation function
at the end. Let's take a quick look at the model, which has, in total, 409,322
parameters. Please note that we specifically constructed a simple CNN from a tiny
image size of 28 x 28 grayscale images. The Figure 8.7 shows the compact structure
of the model defined. We can observe that the largest number of parameters is the
fully connected layer after the feature extractor, containing 98% of the parameters
of the total model:

Figure 8.7: A visual representation of the model structure

Training a CNN for image classification | 257

After defining a model structure, we need to define the loss metric that we are
trying to optimize and specify an optimizer. The optimizer is responsible for
computing the changes for all weights per training iteration, given the total and
backpropagated loss. With Keras and TensorFlow, we can easily choose a state-
of-the-art optimizer and use a default metric for classification:

model.compile(loss='categorical_crossentropy', optimizer='adam',
metrics=['accuracy'])

In the preceding code, we define a categorical_crossentropy loss and adam
optimizer for training the CNN. We also track another metric besides the loss,
which is accuracy. This makes it easier to estimate and measure the performance
of the CNN during training.

4. One more step before we start training is to define a model checkpoint. This is
quite important in allowing us to pause and resume training at any given time after
an epoch. Using Keras, it is quite simple to implement the following:

from keras.callbacks import ModelCheckpoint

checkpoint_path = "./mnist_cnn.bin" checkpoint_cb =
ModelCheckpoint(checkpoint_path)

5. Finally, we can start the training locally by invoking the fit method on the Keras
model. We supply the training data as well as the batch size and number of epochs
(iterations) for training. We also pass the previously created callback model
checkpoint so we can save the model after each epoch:

model.fit(X_train, y_train, batch_size=16, epochs=10,
callbacks=[checkpoint_cb])

6. Finally, we can use the trained model of the last epoch to compute the final score
on the test set:

from keras.models import load_model model = load_model(checkpoint_path)
scores = model.evaluate(X_test, y_test, verbose=1)

print('Test loss:', scores[0]) print('Test accuracy:', scores[1])

We can see, in the preceding code, that training a CNN on a compute instance in
Azure Machine Learning is straightforward and similar to training a model on the local
machine. The only difference is that we have to be sure that all required libraries (and
required versions) are installed and that the data is made available.

258 | Training deep neural networks on Azure

Generating more input data using augmentation

DL models usually have many millions of parameters to represent the model with the
training set distribution. Hence, when dealing with DL, be it in custom vision using
cognitive services, Azure Machine Learning designer, or custom models in Azure
Machine Learning, you should always implement data augmentation.

Data augmentation is a way of creating more training data by slightly modifying the
available data and providing the modified data to the ML algorithm. Depending on
the use case, this could include mirroring, translating, scaling, or skewing images;
or changing the brightness, luminosity, or color information of images. These
modifications strongly improve the generalization of the model, such as enabling better
scale, translation, rotation, and transformation invariance.

The benefit of using TensorFlow and Keras is that data augmentation is a built-in
capability. We first create an ImageDataGenerator object, which stores all our
modifications and can generate iterators through the augmented dataset. The data
augmentation techniques for this generator can be configured during the initialization
of the generator. However, we want to use the generator to simply iterate through the
training images without augmentation and add augmentation once we have connected
all the pieces:

1. Let's implement an image data generator in Keras using the ImageDataGenerator
object:

datagen = ImageDataGenerator()

2. In the next step, we can return a data iterator from the image data generator by
passing the original training image data and labels to the generator. Before we
sample images from the generator, we need to compute the training set statistics
that will be required for further augmentations. Similar to the scikit-learn
BaseTransformer interface, we need to call the fit method on the generator:

datagen.fit(x_train)

3. Next, we can create an iterator by using the flow method:

it = datagen.flow(X_train, y_train, batch_size=16)

4. If instead of loading the images into NumPy arrays beforehand, we wanted to read
individual images from a folder, we can use a different generator function to do so,
as seen in the following snippet:

it = datagen.flow_from_directory(directory='./data/mnist', target_size=(28,
28), batch_size=16, class_mode='categorical')

However, in our example, the training images are combined into a single file and
so we don't need to load the image data ourselves.

Training a CNN for image classification | 259

5. The iterator can now be used to loop through the data generator and yield new
training samples with each iteration. To do so, we need to replace the fit function
with the fit_generator function, which expects an iterator instead of a training
dataset:

model.fit_generator(it,
steps_per_epoch=256, epochs=10, callbacks=[checkpoint_cb])

As we can see, we can pass the same arguments for epoch and callback to the fit_
generator function as we did to the fit function. The only difference is that now we need
to fix a number of steps per epoch so that the iterator yields new images. Once we add
augmentation methods to the generator, we could theoretically generate unlimited
modifications of each training image per epoch. Hence, with this argument, we define
how many batches of data we train each epoch with, which should roughly correspond
with the number of training samples divided by the batch size.

Finally, we can configure the data augmentation techniques. The default image data
generator supports a variety of augmentations through different arguments:

• Translation or shifts

• Horizontal or vertical flips

• Rotations

• Brightness

• Zoom

Let's go back to the image data generator and activate data augmentation techniques.
Here is an example generator that is often used for data augmentation in image
processing:

datagen = ImageDataGenerator(
 featurewise_center=True,
 featurewise_std_normalization=True,
 rotation_range=20,
 width_shift_range=0.2,
 height_shift_range=0.2,

 horizontal_flip=True)

By using this data generator, we can now train the model with augmented image data
and further improve the performance of the CNN. As we saw before, this is a crucial and
strongly recommended step in any DL training pipeline.

260 | Training deep neural networks on Azure

Let's move all the code that we have developed so far into a file called scripts/train.py.
We will use this file in the next section to schedule and run it on a GPU cluster.

Moving training to a GPU cluster using Azure Machine Learning compute

Once we have a training script ready, have verified that the script works, and have
added data augmentation, we can move this training script to a more performant
execution environment. In DL, many operations, such as convolutions, pooling, and
general tensor operators, can benefit from parallel execution. Therefore, we will
execute the training script on a GPU cluster and track its status in the authoring
environment.

A great aspect of Azure Machine Learning is that we can set up and run everything in
Python from the authoring environment, that is the Jupyter notebook running on the
Azure Machine Learning compute instance:

1. First, we will configure our Azure Machine Learning workspace, which is a single
statement without arguments on the compute instance:

from azureml.core.workspace import Workspace ws = Workspace.from_config()

Note

Please note that you are requested to authenticate this application with your Azure
account through an URL outputted from the configuration method.

2. Next, we will load or create a GPU cluster with autoscaling for the training
process:

from azureml.core.compute import ComputeTarget, AmlCompute from azureml.
core.compute_target import ComputeTargetException
cluster_name = "gpu-cluster" vm_size = "STANDARD_NC6" max_nodes = 3
try:
 compute_target = ComputeTarget(workspace=ws,
 name=cluster_name) print('Found existing compute
 target.')
except ComputeTargetException: print('Creating a new compute target...')
 compute_config = AmlCompute.provisioning_configuration(
 vm_size=vm_size, max_nodes=max_nodes)
 # create the cluster and wait for completion
 compute_target = ComputeTarget.create(ws, cluster_name,
 compute_config) compute_target.wait_for_completion(show_
output=True)

Training a CNN for image classification | 261

Wasn't that very simple? Creating a GPU cluster with autoscaling in three lines of
code within Jupyter is pretty cool. Great, now we have our cluster up and running.
However, how do we choose the VM size and the number of nodes for the GPU
cluster?

In general, you can decide between the NC, ND, and NV types from the N-series
VMs in Azure. A later version number (for example, v2 or v3) usually means
updated hardware, hence a newer CPU and GPU, and better memory. For a little
help, you can think of the different N-series versions in terms of applications (NC,
where C means compute; ND, where D means deep learning; and NV, where V
means video). Here is a table to compare the different N-series VM types and their
particular GPU configurations. Most machines can be scaled up to four GPUs per
VM. The Figure 8.8 shows an Azure VM N-series comparison:

Figure 8.8: Azure VM N-series comparison

The prices in the preceding table represent pay-as-you-go prices for Linux
VMs in the West US2 region (except NVv3 in West US and NDv2 in East US) for
September 2019. Please note that these prices may have changed by the time you
are reading this, but it should give you an indication of the different options and
configurations to choose from.

VM type GPU GPU
memory

TFlops
(FP32)

Cost
(per hour)

NC ½ Tesla K80 12 GB 2.0 $0.90

NCv2 1 Tesla P100 16 GB 9.3 $2.07

NCv3 1 Tesla V100 16 GB 14.0 $3.06

ND 1 Tesla P40 24 GB 11.8 $2.07

NDv2 8 Tesla V100 (NVLINK) 16 GB - $12.24

NV ½ Tesla M60 (GRID) 8 GB 4 $1.092

NVv3 ½ Tesla M60 (GRID) 8 GB 4 $1.14

262 | Training deep neural networks on Azure

In order to get a better understanding of the costs and performance, we can look
at a typical workload for training a ResNet-50 model on the ImageNet dataset.
The Figure 8.9, provided by Nvidia, shows that it makes sense to choose the latest
GPU models as their performance increase is much better and the costs are
actually cheaper:

Figure 8.9: A table showing GPU models and the associated costs of training

As we can see in the preceding table, the performance increase visible in the lower
training duration for the same task pays off and results in a much lower cost for
the overall task.

Hence, the STANDARD_NC6 model is a great starting point, from a pricing
perspective, for experimenting with GPUs and CNNs in Azure. The only thing that
we have to make sure is that our model can fit into the available GPU memory of
the VM. A common way to calculate this is to compute the number of parameters
for the model, times it by 2 for storing gradients (times it by 1 when we do only
inferencing), times it by the batch size, and times it by 4 for the single- precision
size in bytes (use 2 for half-precision).

In our example, the CNN architecture requires 1.63 MB to store the trainable
parameters (weights and biases). To also store backpropagated losses for a batch
size of 16, we require around 52.6 MB of GPU memory in order to perform the
whole end-to-end training on a single GPU. This also fits perfectly in our 12 GB of
GPU memory in the smallest NC instance.

Note

Please note that while these numbers seem pretty small and reasonable for
our test case, you will usually deal with larger models (around 1 to 10 million
parameters) and larger image sizes. To put that into perspective, ResNet-152,
trained on image dimensions of 224 x 224 x 3, has approximately 60 million
parameters and a size of 240 MB. On the STANDARD_NC6 instance, we could train,
at most, at a batch size of 24, according to our equation. In reality, however, we
also need to store additional blobs in GPU memory, which makes this calculation
quite sharp.

GPU Training
time

VM type Cost/
instance

Total cost
(USD)

8X V100 6h 2 x Standard_NC24s_v3 $13.712/hour $164.54

8X P100 18h 2 x Standard_NC24s_v2 $9.972/hour $358.99

8X K80 38h 4 x Standard_NC24 $4.336/hour $659.07

Training a CNN for image classification | 263

By adding more GPUs or nodes to the cluster, we have to introduce a different
framework to take advantage of the distributed setup. We will discuss this in more
detail in Chapter 10, Distributed machine learning on Azure. However, we can add
more nodes with autoscaling to the cluster, such that multiple people can submit
multiple jobs simultaneously. The number of maximum nodes can be easily
computed by simultaneous models/node * number of peak models to be trained
simultaneously. In our test scenario, we go with a cluster size of 3 so we can
schedule a few models at the same time.

Note

Keep in mind that this becomes a more important issue when doing parallel
hyperparameter tuning—we will take a closer look at this in the next chapter.

3. OK, we decided on a VM size and GPU configuration and can continue with
the training process. Next, we need to make sure that the cluster can access
the training data. To do so, we use the default datastore on the Azure Machine
Learning workspace. This is blob storage that is automatically deployed with each
workspace and has configured access control for your container instance:

ds = ws.get_default_datastore() ds.upload(src_dir='./data/mnist', target_
path='mnist',
show_progress=True)

In the preceding code, we copy the training data from the local machine to the
default datastore, the blob storage account. As we have discussed in previous
chapters, there are also other ways to upload your data to blob storage or to
another storage system. However, using the datastore API in Azure Machine
Learning has a great benefit—mounting the storage to the cluster.

Mounting blob storage to a machine, or even a cluster, is usually not a
straightforward task. Yes, you could have an NAS and mount it as a network drive
on every node in the cluster, but this is tedious to set up and scale. Using the
datastore API, we can simply request a reference to the datastore, which can be
used to mount the correct folder on every machine that needs to access the data:

ds_data = ds.as_mount()

The preceding command returns a Datastore Mount object, which doesn't look
particularly powerful. However, if we pass this reference as a parameter to the
training script through the estimator, it can automatically mount the datastore
and read the content from the datastore. If you have ever played with mount
points or fstab, you will understand that this magical one-liner can really speed up
your daily workflow.

264 | Training deep neural networks on Azure

4. Now, we can create an Azure ML estimator. An estimator is an abstraction over
a compute target, a highly configurable execution environment (for example,
Docker, Python 3, Conda, or TensorFlow), and your training script. While you can
run any Python script on an abstract estimator, there are a few preconfigured
estimators to work with TensorFlow, PyTorch, Chainer, scikit-learn, and others.
Let's create such an estimator so that we can schedule it on the cluster:

from azureml.train.dnn import TensorFlow
script_params={
'--data-dir': ds_data
}
estimator= TensorFlow(
 source_directory='./scripts',
 compute_target=compute_target,
 script_params=script_params,
 framework_version='1.13',
 entry_script='train.py')

5. In order to read the data from the specified default datastore, we need to parse
the argument in the train.py script. Let's go back to the script and replace the file
loading with the following code block:

import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--data-dir', type=str, dest='data_dir') args =
parser.parse_args()
X_train = load(... % args.data_dir, False) / 255.0 X_test = load(... %
args.data_dir, False) / 255.0
y_train = load(... % args.data_dir, True).reshape(-1) y_test = load(... %
args.data_dir, True).reshape(-1)

6. That leaves us to schedule and run the script on the GPU cluster. However, before
doing so, we want to make sure that all runs are tracked in the Azure Machine
Learning workspace. Therefore, we also add Run to the train.py file and reuse the
Keras callback for Azure Machine Learning from Chapter 3, Data experimentation
and visualization using Azure. Here is what the training script will look like:

from azureml.core import Run
Get the run configuration run = Run.get_context()

Create an Azure Machine Learning monitor callback azureml_cb =
AzureMlKerasCallback(run)

model.fit_generator(it, steps_per_epoch=256, epochs=10, callbacks=[azureml_

Training a CNN for image classification | 265

cb, checkpoint_cb])

Load the best model
model = load_model(checkpoint_path)

Score trained model
scores = model.evaluate(X_test, y_test, verbose=1) print('Test loss:',
scores[0])run.log('Test loss', scores[0]) print('Test accuracy:',
scores[1])
run.log('Test accuracy', scores[1])

As we can see in the preceding code, we add the Run configuration and the Keras
callback to track all metrics during the epochs. We also collect the final test set metric
and report it to the Azure Machine Learning workspace. You can find the complete
runnable example in the code provided with this book.

Improving your performance through transfer learning

In many cases, you don't have a dataset of hundreds of millions of labeled training
samples, and that's completely understandable. However, how can you still benefit
from all the previous work and benchmarks? Shouldn't a feature extractor trained
on recognizing animals also perform well on recognizing faces? The classifier would
certainly be different, but the visual features extracted from images should be similar.

This is the exact idea behind fine-tuning pre-trained models or, more generally
speaking, transfer learning. To fine-tune, we can simply reuse a feature extractor from
a pre-trained DL model (for example, pre-trained on the ImageNet dataset, the faces
dataset, the CoCo dataset, and so on) and attach a custom classifier to the end of the
model. Transfer learning means that we can transfer the features from a model from
one task to another task; for example, from classification to object detection. It seems
a bit confusing at first whether we would want to reuse features for a different task.
However, if a model learned to identify patterns of geographical shapes in images, this
could certainly be reused for any image- related task in the same domain.

One cool property of this is that the task for transfer learning doesn't necessarily need
to be a supervised ML task and so it is often not required to have annotated training
data for the base task. A popular unsupervised ML technique is called auto-encoders,
where an ML model tries to generate a similar-looking output given an input using a
feature extractor and an upsampling network. By minimizing the error between the
generated output and the input, the feature extractor learns to efficiently represent the
input data. Auto-encoders are popular for pre-training network architectures before
reusing the pre-trained weights for the actual task.

266 | Training deep neural networks on Azure

Therefore, we need to make sure that the pre-trained model was trained on a dataset
of the same domain. Images of biological cells look very different from faces and
clouds look very different from buildings. In general, the ImageNet dataset covers a
broad spectrum of photograph-style images for many standard visual features, such as
buildings, cars, animals, and so on. Therefore, it is a good choice for many pre-trained
models.

One more thought worth mentioning is that transfer learning is not only tied to image
data and models dealing with computer vision. Transfer learning has proven valuable in
any domain where datasets are sufficiently similar, such as human voice or written text.
Hence, whenever you are implementing a DL model, do your research on what datasets
could be used for transfer learning and to ultimately improve the model's performance.

Let's dive into some code. We saw a similar example earlier in this chapter, where we
piped the output of the feature extractor to an SVM. In this section, we want to achieve
something similar but with a single resulting DL model. Therefore, in this example, we
will solely build a network architecture for the new model consisting of a pre-trained
feature extractor and a newly initialized classification head:

1. First, we define the number of output classes and the input shape and load the
base model from Keras:

from keras.applications.resnet50 import ResNet50 num_classes = 10
input_shape = (224, 224, 3)
create the base pre-trained model
base_model = ResNet50(input_shape=input_shape, weights='imagenet',
include_top=False, pooling='avg')

In the preceding code, most of the magic for pre-training happens thanks to
Keras. We first specify the image dataset used for training this model using the
weights argument, which will automatically initialize the model weights with
the pre-trained imagenet weights. With the third argument, include_top=False,
we tell Keras to only load the feature extractor part of the model. Using the
pooling argument, we can also specify how the last pooling operation should be
performed. In this case, we choose average pooling.

2. Next, we freeze the layers of the model by setting their trainable property to False.
To do so, we simply loop over all the layers in the model:

for layer in base_model.layers: layer.trainable=False

Training a CNN for image classification | 267

3. Finally, we can attach any network architecture to the model we want. In this case,
we will attach the same classifier head used in the CNN network of the previous
section. Finally, we construct the final model class by using the new architecture
and output at the classifier output layer:

from keras.models import Model
from keras.layers import Flatten, Dense
clf = base_model.output
clf = Dense(256, activation='relu')(clf) clf = Dense(10,
activation='softmax')(clf)
model = Model(base_model.input, clf)

That's it! You have successfully built a model combining a ResNet50 feature extractor
pre- trained on ImageNet with your own custom classification head. You can now use
this Keras model and plug it into your preferred optimizer and send it off to the GPU
cluster. The output of the training will be one single model that can be managed and
deployed as any other custom model.

Note

I want to mention that you are not limited to freezing all the layers of the original
network at all times. A common approach is also to unfreeze later layers in the
network, decrease the learning rate by at least a factor of 10, and continue training.
By repeating this procedure, we could even retrain (or fine-tune) all the layers of
the network in a step-by-step approach with a decreasing learning rate.

Independently of your choice and use case, you should add transfer learning to
your standard repertoire of tricks for training DL models. Treat it as similar to data
augmentation, which in my opinion should always be used as well in all cases.

268 | Training deep neural networks on Azure

Summary
In this chapter, we learned when and how to use DL to train an ML model on Azure. We
used both compute instance and a GPU cluster from within Azure Machine Learning to
train a model using Keras and TensorFlow.

First, we found out that DL works very well on highly structured data with non-obvious
relations from the raw input data to the resulting prediction. Good examples are image
classification, speech-to-text, or translation. However, we also saw that DL models are
parametric models with a large number of parameters and so we often need a large
amount of labeled or augmented input data. In contrast to traditional ML approaches,
the extra parameters are used to train a fully end-to-end model, also including feature
extraction from the raw input data.

Training a CNN using Azure Machine Learning is not difficult. We saw many
approaches, from prototyping in Jupyter to augmenting the training data to running
the training on a GPU cluster with autoscaling. The difficult part in DL is preparing
and providing enough high-quality training data, finding a descriptive error metric,
and optimizing between costs and performance. We looked at an overview of how to
decide on the best VM and GPU size and configuration for your job, something that I
recommend you do before starting your first GPU cluster.

In the next chapter, we go one step further and look into hyperparameter tuning and
automated ML, a feature in Azure Machine Learning that lets you train and optimize
stacked models automatically.

In the previous chapter, we learned how to train convolutional and more complex
deep neural networks (DNNs). When training these models, we are often confronted
with complex choices when parametrizing them, involving various parameters such as
the number of layers, the order of layers, regularization, batch size, learning rate, the
number of epochs, and more. This is not only true for DNNs; the same problem arises
with selecting the correct preprocessing steps, features, models, and parameters in
statistical ML approaches.

In this chapter, we will take a look at optimizing the training process in order
to take away some of those error-prone human choices from machine learning.
These necessary tuning tricks will help you to train better models faster and more
efficiently. First, we will take a look at hyperparameter tuning (also called HyperDrive
in Azure Machine Learning), a standard technique for optimizing all parameter
choices in a machine learning process. By evaluating different sampling techniques
for hyperparameter tuning such as random sampling, grid sampling, and Bayesian
optimization, you will learn how to efficiently trade off runtime and model performance.

Hyperparameter
tuning and Automated

Machine Learning

9

272 | Hyperparameter tuning and Automated Machine Learning

In the second half of this chapter, we will move from hyperparameter optimization
to automating the complete end-to-end machine learning training process using
automated machine learning, which is often referred to as automated machine
learning. Using Azure Automated Machine Learning, we can simply optimize
preprocessing, feature engineering, model selection, hyperparameter tuning, and model
stacking all in one simple abstract pipeline.

One great benefit of Azure Machine Learning is that the concepts of both
hyperparameter tuning and automated machine learning are supported in the same
general way. This means we can deploy a Bayesian optimization experiment to a remote
auto-scaling GPU cluster the same way as we would an Azure Automated Machine
Learning experiment. The best model is returned in the same generic way, which can
then be stored to disk, registered in the model stored, or deployed to Kubernetes in an
instant, without ever leaving your notebook environment.

The following topics will be covered in this chapter:

• Hyperparameter tuning to find the optimal parameters

• Finding the optimal model with Azure Automated Machine Learning

Hyperparameter tuning to find the optimal parameters
In machine learning, we typically deal with parametric or non-parametric models.
These models represent the distribution of the training data in order to make
predictions for unseen data from the same distribution. While parametric models (such
as linear regression, logistic regression, and neural networks) represent the training
data distribution by using a learned set of parameters, non-parametric models describe
the training data through other traits such as decision trees (all tree-based classifiers),
training samples (k- nearest neighbors), or weighted training samples (support
vector machine).

Hyperparameter tuning to find the optimal parameters | 273

The Figure 9.1 outlines a few of the key differences between parametric and non-
parametric models:

Figure 9.1: The difference between parametric and non-parametric models

The term hyperparameter refers to all parameters that are used to configure and tune
the training process of parametric or non-parametric models. Here is a list of some
typical hyperparameters in a neural network:

• The number of hidden layers

• The number of units per layer

• The batch size

• Depth dimensions

• The learning rate Regularization

• Dropout

• The loss metric

The number of hyperparameters and choices of possible values for training a simple
ML model are huge. Have you ever found yourself manually tweaking a setting in your
training process, for example, the number of splits in a decision-based classifier or the
number of units in a neural network classifier? You are not alone, and many beginners
do this! However, it's very important to accept that given the number of possible
parameter choices, it is not feasible to try all combinations.

Not only can we not possibly try all distinct combinations of parameters manually,
but, in many cases, we also can't possibly predict the outcome of a tweak in a
hyperparameter. In such scenarios, we can start looking into finding the optimal
set of parameters automatically. This process is called hyperparameter tuning or
hyperparameter search.

Parametric model Non-parametric model
Constant number of parameters, independent
of training data

Number of parameters grows with the
number of training samples

Strong assumption about the training data No assumption about the training data

Fewer training samples required Many training samples required

Fast training, fast inference Slow training and slow inference

Examples: Linear regression and logistic
regression

Examples: Decision trees and
k-nearest neighbors

274 | Hyperparameter tuning and Automated Machine Learning

Hyperparameter tuning entails the automated testing of a model's performance against
different sets of hyperparameter combinations and ultimately choosing the best
combination of hyperparameters. The definition of the best performance depends on the
chosen metric and validation method. For example, stratified-fold cross-validation with
the f1-score metric will yield a different set of winning parameters than the accuracy
metric with k-fold cross-validation.

One reason why we discuss hyperparameter tuning (and also automated machine
learning) in this book is that we have a competitive advantage by using elastic cloud
compute infrastructure. While it is difficult to train hundreds of models in series
on your laptop, it is super easy to train thousands of models in parallel in the cloud
using cheap auto-scaling compute. Also, using cheap cloud storage, we can persist all
potentially good models for later analysis. Many of the more recent ML papers have
shown that we can often achieve better results by using more compute.

Before we begin tuning hyperparameters, I want to remind you of the importance of
a baseline model. For many practical ML models, you should be able to achieve good
performance using a single tree-based ensemble classifier or a pre-trained neural
network with default parameters. If this is not the case, hyperparameter tuning won't
magically output a top-performing model. In this case, it would be better to go back
to data preprocessing and feature engineering in order to build a good baseline model
first, before tuning batch sizes, the number of hidden units, or the number of trees.

Another issue to avoid with hyperparameter tuning is overfitting and focusing on
the wrong performance metric or validation method. As with any other optimization
technique, hyperparameter tuning will yield the best parameter combination according
to a given metric. Therefore, it is essential to validate your performance metric before
starting hyperparameter tuning.

As with most other techniques in machine learning, there are multiple ways to find
the best hyperparameters for a model. The most popular techniques are grid search,
random search, and Bayesian optimization. In this chapter, we will take a look at all
three of them and discuss their strengths and weaknesses.

Sampling all possible parameter combinations using grid search

Grid search (or grid sampling) is a popular technique for finding the optimal
hyperparameters from a parameter grid by trying every possible parameter
combination of a multi-dimensional grid. For every parameter (continuous and
categorical), we need to define all values that should be tested. Popular ML libraries
provide tools to create these parameter grids efficiently.

Hyperparameter tuning to find the optimal parameters | 275

There are two properties differentiating grid search from other hyperparameter
sampling methods:

• All parameter combinations are assumed to be independent of each other and
hence can be tested in parallel. Therefore, given a set of 100 possible parameter
combinations, we can start 100 models to test all combinations in parallel.

• By testing all possible parameter combinations, we make sure that we search for a
global optimum rather than a local optimum.

Grid search works perfectly for smaller machine learning models with only a few
hyperparameters but grows exponentially with every additional parameter because it
adds a new dimension to the parameter grid.

Let's take a look into how grid search can be implemented using Azure Machine
Learning. In Azure Machine Learning, the hyperparameter tuning functionality lives in
the hyperdrive package. Here is what we are going to do in the following steps:

1. Create a grid sampling configuration.

2. Define a primary metric to define the tuning goal.

3. Create a hyperdrive configuration.

4. Submit the hyperdrive configuration as an experiment to Azure Machine Learning.

We will now look at the steps in more detail:

1. First, we define the parameter choices and ranges for grid sampling, as shown in
the following code block:

from azureml.train.hyperdrive import GridParameterSampling from azureml.
train.hyperdrive.parameter_expressions import *
grid_sampling = GridParameterSampling({
 "--first-layer-neurons": choice(16, 32, 64, 128),
 "--second-layer-neurons": choice(16, 32, 64, 128),
 "--batch-size": choice(16, 32)
 }
)

In the preceding code, we defined a parameter grid using discrete parameter
choices along three parameter dimensions—the number of neurons in the first
layer, the number of neurons in the second layer, and the training batch size.

276 | Hyperparameter tuning and Automated Machine Learning

2. The parameter names are written as command-line arguments because they
will be forwarded as arguments to the training script. Hence, in your training
script, you should make all your training parameters configurable via command-
line arguments. Here is a snippet showing how this could look in your training
example:

import argparse

parser = argparse.ArgumentParser()
parser.add_argument('--batch-size', type=int, dest='batch_size',
default=50)
parser.add_argument('--epochs', type=int, dest='epochs', default=30)
parser.add_argument('--first-layer-neurons', type=int, dest='n_hidden_1',
default=100)
parser.add_argument('--second-layer-neurons', type=int, dest='n_hidden_2',
default=100)
parser.add_argument('--learning-rate', type=float, dest='learning_rate',
default=0.01)
parser.add_argument('--momentum', type=float, dest='momentum', default=0.9)
args = parser.parse_args()

With grid sampling, we will test all possible combinations of these parameters.
This will result in a total of 32 runs (4 x 4 x 2) that we could theoretically run in
parallel, as the training runs and parameter configurations are not dependent on
each other. It might seem obvious, in this case, how many runs we have to perform
and that we can run all parameter configurations in parallel, but we will see later
that this is not the case for random sampling and Bayesian optimization. There,
the number of training runs won't be fixed, and the number of parallel runs will
affect the optimization process. Therefore, it is great to stop for a moment and
appreciate the simplicity of this solution of grid sampling for a small number of
discrete parameters.

3. Next, we need to define a metric that measures the performance of each
parameter combination. This metric can be any numeric value that is logged by
the training script. Please note that this metric does not need to be the same as
the loss function—it can just be any measurement that you would like to use to
compare different parameter pairs. Have a look at the following example. Let's
decide to maximize the accuracy metric for this example. We define the following
parameters:

from azureml.train.hyperdrive import PrimaryMetricGoal primary_metric_name
= "accuracy"
primary_metric_goal = PrimaryMetricGoal.MAXIMIZE

Hyperparameter tuning to find the optimal parameters | 277

In the preceding case, we choose the accuracy metric, which is what we want to
maximize. You can see that we simply specify any metric name. In order to use this
metric to evaluate hyperparameter optimization runs, the training script needs to
log a metric with this name. We have already seen this in the previous chapters,
where we solely wanted to collect a metric in the Azure Machine Learning runs
tab and compare them for an experiment.

4. We use the same name of primary_metric_name to define and log a metric that can
be picked up by hyperdrive to evaluate the run in the training script:

from azureml.core.run import Run
run = Run.get_context() run.log("accuracy", float(val_accuracy))

5. Before we continue, recall the estimator configuration from the previous chapters.
We reuse a CPU-based Azure Machine Learning cluster defined in compute_target
that we saw in Chapter 7, Building ML models using Azure Machine Learning:

from azureml.train.dnn import TensorFlow

estimator = TensorFlow("training", compute_target=compute_target, entry_
script="train.py",
conda_packages=['scikit-learn', 'keras'])

6. Now, we can initialize the hyperdrive configuration, consisting of the estimator,
the sampling grid, the optimization metric, and the number of runs and
concurrent runs:

from azureml.train.hyperdrive import HyperDriveConfig

hyperdrive_run_config = HyperDriveConfig(
 estimator=estimator,
 hyperparameter_sampling=grid_sampling,
 primary_metric_name=primary_metric_name,
 primary_metric_goal=primary_metric_goal,
 max_total_runs=32, max_concurrent_runs=4)

In grid sampling, the number of runs should correspond with the number of
possible parameter combinations. As it is a required attribute, we need to compute
this value and pass it here. The maximum number of concurrent runs in grid
sampling is limited only by the number of nodes in your Azure Machine Learning
cluster. We are using a four-node cluster, so we set the number to 4 to maximize
concurrency.

278 | Hyperparameter tuning and Automated Machine Learning

7. Finally, we can submit the hyperdrive configuration to an experiment, which will
execute all the concurrent child runs on the specified compute target:

from azureml.core.experiment import Experiment
experiment = Experiment(workspace, experiment_name) hyperdrive_run =
experiment.submit(hyperdrive_run_config) print(hyperdrive_run.get_portal_
url())

The preceding snippet will kick off the training process, building and registering
any new Docker images if needed, initializing and scaling up nodes in the
cluster, and finally running the training scripts on the cluster. Each script will be
parameterized using a unique parameter combination from the sampling grid.

8. The Figure 9.2 shows the resulting experiment run when we click on the link that
is returned from the preceding code snippet:

Figure 9.2: The result of the experiment run

We can see that the sampling policy is set to GRID, as well as seeing the spawned
parameter space. These parameters will be applied as command-line arguments to the
training script.

Hyperparameter tuning to find the optimal parameters | 279

However, as you might have guessed already, not everything is great with sampling
all possible parameter combinations from a multi-dimensional grid. As the number
of hyperparameters grows, so do the dimensions of the grid. And each dimension of
parameters adds a magnitude of new parameter configurations that need to be tested.
And don't forget, testing a parameter configuration usually means performing training,
cross- validation, and test set predictions on your model, which can take a significant
amount of resources.

Imagine that you want to search the best parameter combination for 5 parameters with
10 different values for each parameter. Let's assume the following:

• We test 105 (10*10*10*10*10) parameter combinations

• One training run takes only 2 minutes

• We perform 4-fold cross-validation

Then, we would end up with 2 minutes * 4 * 10^5 = 10,00,000 minutes = 555 days of
required runtime. While you probably could perform training in parallel, there exist
other methods that are better suited to large amounts of parameters.

Let's see how we can limit the required runtime of the parameter optimization search
by sampling parameter configurations at random.

Trying random combinations using random search

Random search is another popular hyperparameter sampling method similar to
grid search. The main difference is that instead of testing all possible parameter
combinations, only a few combinations are randomly selected and tested in random
search. The main idea is that grid search often samples parameter configurations that
have little effect on model performance. Therefore, we waste a lot of time chasing
similar solutions where we could use the time instead to try many diverse and hopefully
more successful configurations.

When dealing with large amounts of hyperparameters (for example, more than 5),
random search will find a good set of hyperparameters much faster than grid search—
however, it might not be the optimal result given all possible choices. Even so, in
many cases, it will be a reasonable trade-off to use random search over grid search to
improve prediction performance with hyperparameter tuning.

In random search, parameters are usually sampled from a continuous distribution
instead of using discrete values. This leads to a slightly different way of defining the
parameter grid. Instead of providing precise value choices for continuous variables, we
can define a distribution function for each parameter to draw random values from.

280 | Hyperparameter tuning and Automated Machine Learning

Like grid search, all parameter combinations are completely independent if drawn
without replacement and hence can be fully parallelized. If a parameter grid with
10,000 distinct configurations is provided, we can run and test all x models in parallel.
The variable x stands for any number of different random combinations that should be
tested.

Let's look into random search in Azure Machine Learning:

1. As with all other hyperparameter optimization methods, we find the random
sampling method in the hyperdrive package. As discussed previously, we can now
define probability distribution functions such as normal and uniform for each
parameter instead of choosing only discrete parameters:

from azureml.train.hyperdrive import RandomParameterSampling from azureml.
train.hyperdrive.parameter_expressions import *
random_sampling = RandomParameterSampling({ "--learning-
 rate": normal(10, 3),
 "--momentum": uniform(0.5, 1.0),
 "--batch-size": choice(16, 32, 64)
 }
)

Using continuous parameter ranges is not the only difference in random
sampling. Due to the fact that we can now sample an infinite amount of parameter
configurations from a continuous range, we need a way to specify the duration of
the search. We can use the max_total_runs and max_duration_minutes parameters
to define the expected runtime in minutes or to limit the amount of sampled
parameter configurations.

2. Let's test 25 different configurations in this sample and run the hyperparameter
tuning process for a maximum of 60 minutes. We set the following parameters:

max_total_runs = 25
max_duration_minutes = 60

3. We reuse the same metric that we defined in the previous section, namely
accuracy. The hyperdrive configuration looks as follows:

from azureml.train.hyperdrive import HyperDriveConfig hyperdrive_run_config
= HyperDriveConfig(
 estimator=estimator,
 hyperparameter_sampling=random_sampling,
 primary_metric_name=primary_metric_name,
 primary_metric_goal=primary_metric_goal,
 max_total_runs=max_total_runs,
 max_duration_minutes=max_duration_minutes)

Hyperparameter tuning to find the optimal parameters | 281

4. Similar to before, we can submit the hyperdrive configuration to Azure Machine
Learning from the authoring runtime, which will schedule all the optimization
runs on the compute target:

from azureml.core.experiment import Experiment
experiment = Experiment(workspace, experiment_name) hyperdrive_run =
experiment.submit(hyperdrive_run_config) print(hyperdrive_run.get_portal_
url())

Random sampling is a good choice for large amounts of tunable hyperparameters or
sampling values from a continuous range. However, instead of optimizing the parameter
configurations step by step, we simply try all those configurations at random and
compare how they perform.

Note

If you are asking yourself now whether there is no better (or more elegant way) to
solve this, I encourage you to continue to the Optimizing parameter choices using
Bayesian optimization section.

Converging faster using early termination

Both the grid and random sampling techniques will test models for poor parameter
choices and hence spend precious compute resources on fitting a poorly parameterized
model to your training data. Early termination is a technique used to stop a training run
early if the intermediate results look worse than other models.

In general, you should always try to use early termination when using either grid or
random sampling. You get no benefit from training such models if the results are a lot
worse than for some of the existing models.

Once we agree on the idea of canceling poor-performing runs, we need to find a way
to specify a threshold of when a run performs well and when a run should be canceled.
Azure Machine Learning provides a few termination policies, namely bandit, median
stopping, and truncation selection. Let's take a look at them and see what their
differences are.

Before we get into the details, though, let's first take a look into how to configure
early termination. In Azure Machine Learning, we can parameterize the different early
termination policies with two global properties, namely evaluation_interval and delay_
evaluation. These parameters control how often the early termination policy is tested.
An example of using these parameters follows:

evaluation_interval = 1
delay_evaluation = 10

282 | Hyperparameter tuning and Automated Machine Learning

The unit of both parameters is in intervals. An interval is whenever we log a metric in
an experiment run and hence whenever we call run.log(). For example, when training
a neural network, an interval will equal one training epoch. The delay_evaluation
parameter controls how many intervals we want to wait from the start to test the early
termination policy for the first time. In the preceding example, we configured it to 10,
and hence we wait for 10 epochs before testing the early termination policy.

Then, every other test of the policy is controlled using the evaluation_interval
parameter. It describes how many iterations should pass until the next test. In the
preceding example, we set evaluation_interval to 1, which is also the default value.
This means that we test the early termination policy every interval after the delay_
evaluation interval—here, every 1 iteration. Let's look into the three termination
policies.

The median stopping policy

We start with the easiest of the three, the median stopping policy. It takes no other
arguments than the two default arguments, which control when and how often the
policy should be tested. The median stopping policy keeps track of the running average
of the primary metric across all experiment runs. Whenever the median policy is
evaluated, it will test whether the current metric is above the median of all running
experiments and stop those that are below. Here is an example of how to create a
median stopping early termination policy for any hyperparameter tuning script:

from azureml.train.hyperdrive import MedianStoppingPolicy early_termination_
policy = MedianStoppingPolicy(

 evaluation_interval=evaluation_interval,
 delay_evaluation=delay_evaluation)

As we can see in the preceding example, it's quite simple to construct a median
stopping policy as it is only configured by the two default parameters. Due to its
simplicity, it is a very effective method of reducing the runtime of your hyperparameter
optimization script. The early termination policy is then applied to the hyperdrive
configuration file using the policy parameter. Let's now look at the truncation selection
policy.

The truncation selection policy

Unlike the median stopping policy, the truncation selection policy will always kill runs
when evaluated. It will kill all runs whose primary metric is at the lowest configured
percentage. This percentage is defined using the truncation_percentage parameter:

truncation_percentage = 10

evaluation_interval = 5

delay_evaluation = 10

Hyperparameter tuning to find the optimal parameters | 283

In the preceding example, we set the truncation_percentage value to 10%. This means
that whenever the early termination policy is executed, it will kill the worst-performing
10% of runs. We also increase the evaluation_interval value to 5, as we don't want to
kill runs every epoch, as shown:

from azureml.train.hyperdrive import TruncationSelectionPolicy

early_termination_policy = TruncationSelectionPolicy(
 truncation_percentage=truncation_percentage,
 evaluation_interval=evaluation_interval,
 delay_evaluation=delay_evaluation)

This early termination policy makes sense when only very little training resources are
available and we want to aggressively prune the number of runs each time the early
termination policy is evaluated. Let's take a look at the final policy, the bandit policy.

The bandit policy

The bandit policy works similarly but inverse to the truncation policy. Instead of
stopping the X% worst performing runs, it kills all runs that are X% worse than the best
current run. However, the bandit policy is not configured using a percentage value, but
rather a slack_factor or slack_amount parameter. The slack_factor parameter describes
the relative deviation from the best metric, whereas the slack_amount parameter
describes the absolute deviation from the best primary metric.

Let's look at an example. We configure hyperdrive with the following configuration of a
slack_factor parameter of 0.2 and test an accuracy value (bigger is better). As before,
we set the evaluation_interval value to 5 and the evaluation_delay value to 10 intervals:

slack_factor = 0.2

evaluation_interval = 5

delay_evaluation = 10

from azureml.train.hyperdrive import BanditPolicy early_termination_policy =
BanditPolicy(

slack_factor = slack_factor, evaluation_interval=evaluation_interval, delay_
evaluation=delay_evaluation)

Let's say the best-performing run yields an accuracy of 0.8 after epoch 10, when the
early termination policy gets applied for the first time. Now, all runs that are performing
up to 20% worse than the best metric are killed. We can compute the relative deviation
from 0.8 accuracy by using the following function: 0.8/(1 + 0.2) = 0.67. Hence, all runs
that yield a performance lower than 0.67 will get canceled by the early termination
policy.

284 | Hyperparameter tuning and Automated Machine Learning

A HyperDrive configuration with termination policy

In order to create a HyperDrive configuration, we need to pass the early termination
policy using the policy parameter. Here is an example using grid search sampling and
the previously defined bandit policy:

from azureml.train.hyperdrive import HyperDriveConfig

hyperdrive_run_config = HyperDriveConfig(estimator=estimator,
 hyperparameter_sampling=grid_sampling,
 policy=early_termination_policy,
 primary_metric_name="accuracy",
 primary_metric_goal=PrimaryMetricGoal.MAXIMIZE)

The bandit policy is a good trade-off between the median stopping and the truncation
selection policy that works well in many cases. You can be rest assured that only a
well- performing subset of all hyperparameter configurations will be run and tested for
multiple intervals.

Let's submit this HyperDrive configuration as the experiment to Azure Machine
Learning. We can use the RunDetails method that we saw in Chapter 7, Building ML
models using Azure Machine Learning, to output additional information about the
hyperparameter tuning experiment—such as scheduling and parameter information, a
visualization of the training performance, and a parallel coordinate chart showing the
parameter dimensions:

from azureml.widgets import RunDetails

hyperdrive_run = exp.submit(hyperdrive_run_config) RunDetails(hyperdrive_
run).show()

If you run the preceding code, you will see a nice visualization showing the sampled
parameters on a parallel coordinates plot. Here you can see which parameter
combinations yield high model accuracy. You can also select different plots such as
two- and three- dimensional scatter plots to view the same information:

Figure 9.3: A parallel coordinates chart showing parameters and accuracy

Hyperparameter tuning to find the optimal parameters | 285

By reading through this section, you have learned that applying an early termination
policy to your hyperparameter optimization script is quite simple but extremely
effective in Azure Machine Learning. With just a few lines of code, we can reduce the
number of training runs to a minimum and only finish those that are yielding promising
results.

Note

When using hyperparameter optimization with random or grid sampling, always
use an early termination policy.

Optimizing parameter choices using Bayesian optimization

Until now, we have solely been evaluating different parameter configurations sampled
from a grid or at random without many strategies. This had the benefit that all
configurations were independent and could run concurrently. However, imagine
using an ML model to help us find the best parameter combination for a large multi-
dimensional parameter space. That's exactly what Bayesian optimization does in the
domain of hyperparameter tuning.

The job of an optimization method is to find the optimal value (that is, a minimum or
maximum) of a predefined objective function. In hyperparameter tuning, we are faced
with a very similar problem: we want to find the parameter configuration that yields the
best- predefined evaluation metric for an ML model.

So, how does this work? We first define a hyperplane, a multi-dimensional grid to
sample our parameter configurations. In the following diagram, we show such a plane
for two parameters along the x and y axes. The z axis represents the performance of the
model that is tested using the parameters at this specific location:

286 | Hyperparameter tuning and Automated Machine Learning

Figure 9.4: The two-dimensional Rastrigin function

The preceding diagram shows the two-dimensional Rastrigin function, as an example of
something that is extremely hard to optimize. In hyperparameter tuning, we often face
a similar problem in that finding the optimal solution is really difficult—just like finding
the global minimum in the preceding function.

We then sample points from this plane and test the first (few) parameter configurations.
Our assumption is that the parameters are not independent and the model will have
similar performances when using similar parameters. However, each evaluation only
yields a noisy value of the true model performance. Using these assumptions, we can
use Gaussian processes to combine the model evaluations to a multi-variate continuous
Gaussian. Next, we can compute the points for the highest expected improvements on
this Gaussian. These points will yield the new samples to test with our model.

Luckily, we don't have to implement the algorithm ourselves, but many ML libraries
provide a hyperparameter optimization algorithm out of the box. In Azure Machine
Learning, we can use the Bayesian sampling method, which helps us to pick good
parameter configurations in order to optimize the pre-defined metric.

Hyperparameter tuning to find the optimal parameters | 287

The parameter grid is defined similarly to the random sampling technique by using
a continuous or discrete parameter space for all parameter values, as shown in the
following code block:

from azureml.train.hyperdrive import BayesianParameterSampling from azureml.
train.hyperdrive.parameter_expressions import *

bayesian_sampling = BayesianParameterSampling({ "--learning-
 rate": normal(10, 3),

 "--momentum": uniform(0.5, 1.0),

 "--batch-size": choice(16, 32, 64)

 }

)

Before we continue, we need to keep one thing in mind. The Bayesian sampling
technique tries to predict well-performing parameter configurations based on the
results of the previously tested parameters. This means that the parameter choices
and runs are not independent anymore. We can't run all experiments concurrently at
the same time, as we need the results of some experiments to sample new parameters.
Therefore, we need to set an additional parameter to control how many training runs
should run concurrently.

We do this using the max_concurrent_runs parameter. In order to let the Bayesian
optimization technique converge, it is recommended to set this value to a small value,
for example, in the range of 2-10. Let's set the value to 4 for this experiment and the
number of total runs to 100. This means that we are using 25 iterations for the Bayesian
optimization method where we explore four parameter configurations concurrently at
a time:

max_concurrent_runs = 4

max_total_runs = 100

Let's kick off the experiment with Bayesian sampling:

from azureml.train.hyperdrive import HyperDriveConfig from azureml.core.
experiment import Experiment

hyperdrive_run_config = HyperDriveConfig(estimator=estimator, hyperparameter_
sampling=bayesian_sampling, primary_metric_name=primary_metric_name,
primary_metric_goal=primary_metric_goal, max_total_runs=max_total_runs,

max_concurrent_runs=max_concurrent_runs)

experiment = Experiment(workspace, experiment_name) hyperdrive_run =
experiment.submit(hyperdrive_run_config) print(hyperdrive_run.get_portal_
url())

288 | Hyperparameter tuning and Automated Machine Learning

It's easy to see that this technique can't be parallelized to thousands of machines in
order to finish faster. However, due to the optimization step, it generally yields good
results in a relatively short amount of time. Another issue is that the optimization
technique used in Bayesian sampling requires each result of each run with the defined
parameter configuration to compute the new parameter choices. Therefore, we can't
use early termination together with Bayesian sampling, as the training would be
stopped earlier, and therefore no accurate metric could have been computed.

Once you've played with the technique of using machine learning to optimize an
ML model, a certain question might come to you: why should we stop at optimizing
hyperparameters, and why shouldn't we optimize model choices, network structures, or
model stacking altogether?

And this is a perfectly valid thought. No human can possibly test all variations of
different ML models, different parameter configurations, and different nested models
together.

Therefore, as a next step, we will look into the domain of Azure Automated Machine
Learning in the next section.

Finding the optimal model with Azure Automated
Machine Learning
Automated machine learning is an exciting new trend that many (if not all) cloud
providers follow. The aim is to provide a service to users that automatically
preprocesses your data, selects an ML model, and trains and optimizes the model to
optimally fit your training data given a specific error metric. In this way, it will create
and train a fully automated end-to-end ML pipeline that only needs your labeled
training data as input. Here is a list of steps that Azure Automated Machine Learning
optimizes for you:

• Data preprocessing

• Feature engineering

• Model selection

• Hyperparameter tuning

• Model ensembling

Finding the optimal model with Azure Automated Machine Learning | 289

While most experienced machine learning engineers or data scientists would be very
cautious about the effectiveness of such an automated approach, it still has a ton of
benefits, which will be explained in this section. If you like the idea of hyperparameter
tuning, then you will definitely find a lot of value in Azure Automated Machine Learning.

A good way to think about Azure Automated Machine Learning is that it performs
a hyperparameter search over the complete end-to-end ML pipeline, similar to
Bayesian optimization, but over a much larger parameter space. The parameters are
now individual steps in the end-to-end ML pipeline, which should be automated. The
great thing about Azure Automated Machine Learning is that instead of going through
the dumb sampling of all possible parameter choices, it will predict how well certain
preprocessing steps and models will perform on a dataset before actually training a
model. This process is called meta-learning and will help the optimization process to
yield great candidate solutions for the pipeline.

Advantages and benefits of Azure Automated Machine Learning

Let's evaluate the advantages of Azure Automated Machine Learning. If we look at
the list of automated steps mentioned earlier, each one requires multiple days for
an experienced data scientist to explore and apply it, even if they would end up only
with the best-practice approach for each category, for example, replacing categorical
variables with a label encoder. Even steps such as selecting the correct model, such
as either LightGBM or XGBoost for gradient-based tree ensemble classification, are
non-trivial, as they require experience and knowledge of both tools. Moreover, we all
know that those two are only a tiny subset of all the possible options for a classification
model. If we go up all the way to hyperparameter tuning and model stacking, we can
immediately tell that the amount of work required to build a great ensemble model is
non-trivial.

I want to emphasize that this is not only a knowledge problem. The key aim of Azure
Automated Machine Learning is to replace manual steps with automated best practices,
applying continuously improving rules and heavily optimizing every possible human
choice. It's very similar to hyperparameter tuning but for the complete end-to-end
process. A machine will find the best parameters much faster than a human simply by
using optimization.

290 | Hyperparameter tuning and Automated Machine Learning

You are now through more than half of this book and you have learned the tips and
tricks for how to build end-to-end ML pipelines on your own. We can also look at Azure
Automated Machine Learning from a different perspective, namely as machine learning
as a service (MLaaS). By now, you should be aware that each step of building an end-to-
end ML pipeline is a thorough and complicated task. Even when you can choose the
correct model and tuning parameters using Bayesian optimization, the cost of building
this infrastructure and operating it is significant. In this case, choosing MLaaS would
provide you with a machine learning infrastructure for a fraction of the usual cost.

There is another reason why the idea of Azure Automated Machine Learning is very
interesting. It abstracts the machine learning part from your problem and leaves you
with what every business should know best—data. Similar to using a managed service
in the cloud (for example, a managed database), which lets you focus on implementing
business logic rather than operating infrastructure, Azure Automated Machine Learning
will allow you to use a managed ML pipeline built on best practices and optimization.

This also leads to the reason why Azure Automated Machine Learning is still a great fit
for many (mature) companies—it reduces a prediction problem to the most important
tasks:

• Data acquisition

• Data cleansing

• Data labeling

• Selecting an error metric

We don't want to blame anyone, but some machine learning engineers love to simply
skip these topics and dive right into the fun parts, namely feature engineering, model
selection, parameterization, and tuning. Therefore, a good start for every ML project
is to actually start with Azure Automated Machine Learning, because you have to
focus only on the data side and not worry at all about the machine learning side.
After achieving a good initial score, you can always go ahead and start further feature
engineering and build your own model if needed.

Finding the optimal model with Azure Automated Machine Learning | 291

If you now agree that the Azure Automated Machine Learning trend is reasonable
and that you could benefit from it in one way or another, we will now dive deep into
some examples and code. We will look at the different capabilities of Azure automated
machine learning, a product of Azure Machine Learning, as applied in a standard
end-to-end ML pipeline.

Before we jump into the code, let's take a look at what problem Azure automated
machine learning can tackle. In general, we can decide between classification,
regression, and time- series forecasting in Azure Automated Machine Learning. As
we know from the previous chapters, time-series forecasting is simply a variant of
regression where all predicted values are in the future.

Hence, the most important task after choosing the correct ML task is choosing the
proper error metric that should be optimized. The following table lists all error metrics
that are supported right now:

Figure 9.5: A list of the error metrics

You should be familiar with most of these metrics as they are variants of the most
popular error metrics for classification and regression. Once we have chosen our
metric, we continue with preprocessing.

Regression Time-Series Forecasting

accuracy spearman_correlation spearman_correlation

AUC_weighted normalized_root_mean_
squared_error

normalized_root_mean_
squared_error

average_precision_score_
weighted

r2_score r2_score

norm_macro_recall normalized_mean_absolute_
error

normalized_mean_absolute_
error

precision_score_weighted

292 | Hyperparameter tuning and Automated Machine Learning

For completeness, here is a table of all possible models per task at the time of writing.
The great thing about a managed service in the cloud is that this list will most likely
grow in the future to add the most recent state-of-the-art models. However, this table
should be thought of just as additional information for you, since the idea of Azure
Automated Machine Learning is that the models are automatically chosen for you.
However, according to the user's preferences, individual models from the list can be
included or excluded for Azure Automated Machine Learning:

Figure 9.6: A list of all supported models

With all this in mind, let's now look at a classification example using Azure Automated
Machine Learning.

A classification example

When using new technology, it's always good to take a step back and think about what
the technology could be theoretically capable of. Let's use the same approach to figure
out how automated preprocessing could help us in a typical ML project and where its
limitations will be.

Regression Time-Series Forecasting
LogisticRegression ElasticNet ElasticNet

SGD GradientBoosting GradientBoosting

MultinomialNaiveBayes DecisionTree DecisionTree

BernoulliNaiveBayes KNN KNN

SVM LassoLars LassoLars

LinearSVM SGD SGD

KNN RandomForest RandomForest

DecisionTree ExtremeRandomTrees ExtremeRandomTrees

RandomForest LightGBM LightGBM

ExtremeRandomTrees TensorFlowLinearRegressor TensorFlowLinearRegressor

LightGBM TensorFlowDNN TensorFlowDNN

GradientBoosting Arima

TensorFlowDNN Prophet

Finding the optimal model with Azure Automated Machine Learning | 293

Azure Automated Machine Learning is great in applying best-practice transformations
to your dataset: applying date/time transformations, the normalization and
standardization of your data when using linear regression, handling missing data or
dropping low-variance features, and so on. There is a long list of features provided by
Microsoft that is expected to grow in the future.

Let's recall Chapter 6, Advanced feature extraction with NLP. While Azure Automated
Machine Learning can detect free text and convert it into a numeric feature vector, it
won't be able to understand the semantic meaning of the data in your business domain.
Therefore, it will be able to transform your textual data, but if you need semantic
encoding of your text or categorical data, you have to implement that yourself.

Another thing to remember is that Azure Automated Machine Learning will not try to
infer any correlations of different feature dimensions in your training data. Hence, if
you want to combine two categorical columns into a combined feature column (for
example, using one-hot-encoding, mean embedding, and so on), then you will have to
implement this on your own.

In Azure Automated Machine Learning, there are two different sets of preprocessors—
the simple ones and the complex ones. Simple preprocessing is just referred to as
preprocessing. The Figure 9.7 shows all simple preprocessing techniques that will
be evaluated during Azure Automated Machine Learning training if the preprocess
argument is specified. If you have worked with scikit-learn before, then most of the
following preprocessing techniques should be fairly familiar to you:

Figure 9.7: A list of supported preprocessing techniques

Preprocessing Step Description
StandardScaler Normalization: mean subtraction and scaling feature to unit variance.

MinMaxScaler Normalization: scaling feature to minimum and maximum.

MaxAbsScaler Normalization: scaling feature by maximum absolute value.

RobustScaler Normalization: scaling feature to quantile range.

PCA Linear dimensionality reduction based on principal component
analysis (PCA).

TruncatedSVD Linear dimensionality reduction-based truncated singular value
decomposition (SVD). Contrary to PCA, this estimator does not
center the data beforehand.

SparseNormalizer Normalization: each sample is normalized independently.

294 | Hyperparameter tuning and Automated Machine Learning

Complex preprocessing is referred to as featurization. These preprocessing steps are
more complicated and apply various tasks during Azure Automated Machine Learning
optimization. As a user of Azure automated machine learning, you can expect this list to
grow and include new state-of-the- art transformations as they become available. The
Figure 9.8 lists the various featurization steps:

Figure 9.8: A list of supported featurization steps

Featurization Step Description
Drop high cardinality
or no variance
features

Drops high cardinality (for example, hashes, IDs, or GUIDs) or no
variance (for example, all values missing or the same value across
all rows) features.

Impute missing
values

Imputes missing values for numerical features (mean imputation) and
categorical features (mode imputation).

Generate additional
features

Generates additional features derived from date/time (for example,
year, month, day, day of the week, day of the year, quarter, week
of the year, hour, minute, and second) and text features (term
frequency based on n-grams).

Transform and
encode

Encodes categorical features using one-hot encoding (low
cardinality) and one-hot-hash encoding (high cardinality). Transforms
numeric features with few unique values into categorical features.

Word embeddings Uses a pre-trained embedding model to convert text into aggregated
feature vectors using mean embeddings.

Target encodings Performs target encoding on categorical features.

Text target encoding Performs target encoding on text features using a bag-of- words
model.

Weight of evidence Calculates the correlation of categorical columns to the target column
through the weight of evidence and outputs a new feature per
column per class.

Cluster distance Trains a k-means clustering model on all numerical columns and
computes the distance of each feature to its centroid and outputs
a new feature per column per cluster.

Finding the optimal model with Azure Automated Machine Learning | 295

Let's start with a simple classification task that also uses preprocessing:

1. We start by defining a dictionary containing the Azure Automated Machine
Learning configuration. To enable standard preprocessing such as scaling,
normalization, and PCA/SVD, we need to set the preprocess property to true. For
advanced preprocessing and feature engineering, we need to set the featurization
property to auto. The following code block shows all the settings:

automl_settings = { "experiment_timeout_minutes" : 15,
"n_cross_validations": 3, "primary_metric": 'accuracy', "featurization":
'auto', "preprocess": True, "verbosity": logging.INFO,
}

2. Using this configuration, we can now load a dataset using pandas. As you can
see in the following snippet, we load the titanic dataset and specify the target
column as a string. This column is required later for the Azure Automated Machine
Learning configuration:

import pandas as pd
df = pd.read_csv("train.csv")
target_column = "survival"

Note

When using Azure Automated Machine Learning and the local execution context,
you can use a pandas DataFrame as the input source. However, when you execute
the training on a remote cluster, you need to wrap the data in an Azure Machine
Learning dataset.

3. Whenever we use a black-box classifier, we should also hold out a test set to verify
the test performance of the model in order to validate generalization. Therefore,
we split the data into train and test sets:

from sklearn.model_selection import train_test_split df_train, df_test =
train_test_split(df, test_size=0.2)

296 | Hyperparameter tuning and Automated Machine Learning

4. Finally, we can supply all the required parameters to the Azure Automated
Machine Learning configuration constructor. In this example, we use a local
execution target to train the Azure Automated Machine Learning experiment.
However, we can also provide an Azure Machine Learning dataset and submit the
experiment to our training cluster:

from azureml.train.automl import AutoMLConfig automl_config = AutoMLConfig(
 task='classification',
 debug_log='debug.log',
 compute_target=local_target,
 training_data=df_train,
 label_column_name=target_column,
 **automl_settings)

5. Let's submit the Azure Automated Machine Learning configuration as an
experiment to the defined compute target and wait for completion. We can output
the run details:

from azureml.widgets import RunDetails

automl_run = experiment.submit(automl_config, show_output = False)
RunDetails(automl_run).show()

Similar to HyperDriveConfig, we can see that RunDetails for Azure Automated
Machine Learning shows a lot of useful information about your current
experiment. Not only can you see all of your scheduled and running models,
but you also get a nice visualization for the trained models and their training
performance. The Figure 9.9 shows the accuracy of the first 14 runs of the Azure
Automated Machine Learning experiment:

Figure 9.9: The accuracy of the first 14 runs of Azure Automated Machine Learning

Summary | 297

6. Finally, after 15 minutes, we can retrieve the best ML pipeline from the Azure
Automated Machine Learning run. From now on, we will refer to this pipeline
simply as the model, as all preprocessing steps are packed into the model, which
itself is a pipeline of operations. We use the following code to retrieve the pipeline:

best_run, best_model = remote_run.get_output()

7. The resulting fitted pipeline (called best_model) can now be used exactly like
a scikit-learn estimator. We can store it to disk, register it to the model store,
deploy it to a Container instance, or simply evaluate it on the test set. We will see
this in more detail in Chapter 12, Deploying and operating machine learning models.
Finally, we want to evaluate the best model. To do so, we take the testing set that
we separated from the dataset beforehand and predict the output on the fitted
model:

from sklearn.metrics import accuracy_score

y_test = df_test[target_column]
X_test = df_test.drop(target_column, axis=1) y_pred = fitted_model.
predict(X_test)

accuracy_score(y_test, y_pred)

In the preceding code, we used the accuracy_score function from scikit-learn to
compute the accuracy of the final model. These steps are all you need to perform
classification on a dataset using automatically preprocessed data and fitted models.

Summary
In this chapter, we introduced hyperparameter tuning (through HyperDrive) and
Azure Automated Machine Learning. We observe that both techniques can help you to
efficiently retrieve the best model for your ML task.

Grid sampling works great with classical ML models, and also when the number of
tunable parameters is fixed. All values on a discrete parameter grid are evaluated. In
random sampling, we can apply a continuous distribution for the parameter space and
select as many parameter choices as we can fit into the configured training duration.
Random sampling performs better on a large number of parameters. Both sampling
techniques can/should be tuned using an early stopping criterion.

298 | Hyperparameter tuning and Automated Machine Learning

Unlike random and grid sampling, Bayesian optimization probes the model performance
in order to optimize the following parameter choices. This means that each set of
parameter choices and the resulting model performance are used to compute the next
best parameter choices. Therefore, Bayesian optimization uses machine learning to
optimize parameter choices for your ML model. Due to the fact that the underlying
Gaussian process requires the resulting model performance, early stopping does not
work with Bayesian optimization.

We learned that Azure Automated Machine Learning is a generalization of Bayesian
optimization on the complete end-to-end ML pipeline. Instead of choosing only
hyperparameters, we also choose pre-processing, feature engineering, model selection,
and model stacking methods and optimize those together. Azure Automated Machine
Learning speeds up this process by predicting which models will perform well on your
data instead of blindly trying all possible combinations. Both techniques are essential
for a great ML project; Azure Automated Machine Learning lets you focus on the data
and labeling first, while hyperparameter tuning lets you optimize a specific model.

In the next chapter, we will take a look at training deep neural networks where the data
or the model parameters don't fit into the memory of a single machine anymore, and
therefore distributed learning is required.

In the previous chapter, we learned about hyperparameter tuning, through search
and optimization using HyperDrive as well as Azure Automated Machine Learning, as
a special case of hyperparameter optimization, involving feature engineering, model
selection, and model stacking. Automated machine learning is machine learning as a
service (MLaaS) where the only input is your data, a ML task, and an error metric. It's
hard to imagine running all the experiments and parameter combinations for Azure
Automated Machine Learning on a single machine or a single CPU/GPU—we are looking
into ways to speed up the training process through parallelization and distributed
computing.

In this chapter, we will take a look into distributed and parallel computing algorithms
and frameworks for efficiently training ML models in parallel. The goal of this chapter
is to build an environment in Azure where you can speed up the training process of
classical ML and deep learning (DL) models by adding more machines to your training
environment, thereby scaling out the cluster.

Distributed machine
learning on Azure

10

302 | Distributed machine learning on Azure

First, we will take a look at the different methods and fundamental building blocks for
distributed ML. You will grasp the difference between training independent models in
parallel, as done in HyperDrive and Azure Automated Machine Learning, and training
a single model ensemble on a large dataset in parallel by partitioning the training
data. We then will look into distributed ML for single models and discover the data-
distributed and model-distributed training methods. Both methods are often used
in real-world scenarios for speeding up or enabling the training of large deep neural
networks (DNNs).

After that, we will discover the most popular frameworks for distributed ML and how
they can be used in Azure and in combination with Azure Machine Learning compute.
The transition between execution engines, communication libraries, and functionality
for distributed ML libraries is smooth but often hard to understand. However, after
reading this chapter, you will understand the difference between running Apache Spark
in Databricks with MLlib and using Horovod, Gloo, PyTorch, and TensorFlow parameter
server.

In the final section, we will take a look at two practical examples of how to implement
the functionality we'll be covering in Azure and integrate it with Azure Machine
Learning compute.

This chapter covers the following topics:

• Exploring methods for distributed ML

• Using distributed ML in Azure

Exploring methods for distributed ML
The journey of implementing ML pipelines is very similar for a lot of users, and is often
similar to the steps described in the previous chapters. When users start switching
from experimentation to real-world data or from small examples to larger models, they
often experience a similar issue: training large parametric models on large amounts of
data—especially DL models—takes a very long time. Sometimes, epochs last hours and
training takes days to converge.

Waiting hours or even days for a model to converge means precious time wasted for
many engineers, as it makes it a lot harder to interactively tune the training process.
Therefore, many ML engineers need to speed up their training process by leveraging
various distributed computing techniques. The idea of distributed ML is as simple as
speeding up a training process by adding more compute resources. In the best case,
the training performance improves linearly by adding more machines to the training
cluster (scaling out). In this section, we will take a look at the most common patterns of
distributed ML and try to understand and reason about them. In the next section of this
chapter, we will also apply them to some real-world examples.

Exploring methods for distributed ML | 303

Most modern ML pipelines use some of the techniques discussed in this chapter to
speed up the training process once their data or models become larger. This is similar
to the need for big data platforms—like Spark, Hive, and so on—for data preprocessing,
once the data gets large. Hence, while this chapter seems overly complex, I would
recommend revisiting the chapter anytime you are waiting for your model to converge
or want to produce better results faster.

There are generally three patterns for leveraging distributed computing for ML:

• Training independent models in parallel

• Training copies of a model in parallel on different subsets of the data

• Training different parts of the same model in parallel

Let's take a look at each of these methods.

Training independent models on small data in parallel

We will first look at the easiest example, training (small) independent models
on a (small) dataset. A typical use case for this parallel training is performing a
hyperparameter search or the optimization of a classic ML model or a small neural
network. This is very similar to what we covered in the previous chapter. Even Azure
Automated Machine Learning—where multiple individual independent models are
trained and compared—uses this approach under the hood. In parallel training, we aim
to speed up the training of multiple independent models with different parameters by
training these models in parallel.

Figure 10.1 shows this case, where instead of training the individual models in sequence
on a single machine, we train them in parallel:

Figure 10.1: Training the model in parallel

304 | Distributed machine learning on Azure

You can see that no communication or synchronization is required during the training
process of the individual models. This means that we can train either on multiple CPUs/
GPUs on the same machine or on multiple machines.

When using Azure Machine Learning for hyperparameter tuning, this parallelization is
easy to achieve by configuring an Azure Machine Learning compute target with multiple
nodes and selecting the number of concurrent runs through the max_concurrent_runs
parameter of the HyperDrive configuration. In Azure Machine Learning HyperDrive,
all it takes is to specify an estimator and param_sampling, and submit the HyperDrive
configuration as an experiment in order to run the individual task in parallel, as
shown here:

from azureml.train.hyperdrive import HyperDriveConfig hyperdrive_run_config =
HyperDriveConfig(estimator=estimator,

 hyperparameter_sampling=param_sampling,
 primary_metric_name="accuracy",

 primary_metric_goal=PrimaryMetricGoal.MAXIMIZE,
 max_total_runs=100,

 max_concurrent_runs=4)

from azureml.core.experiment import Experiment = Experiment(workspace,
experiment_name)

hyperdrive_run = experiment.submit(hyperdrive_run_config)

Here are some formulas to compute the value for max_concurrent_runs for HyperDrive
or any other distributed computing setup:

• For CPU-based training, we can train at least Ntotal models concurrently if every
node has enough memory for the training data and model parameters using the
following equation:

Figure 10.2: The number of models for CPU-based training

Exploring methods for distributed ML | 305

• For GPU-based training, the number of concurrent models, Ntotal, is computed in
the same way, given that each node has enough GPU memory available:

Figure 10.3: The number of models for GPU-based training

Here is a guide to how to estimate how much memory a single model will consume in
memory:

• Size of a single parameter:

Half-precision float: 16 bits (2 bytes)

Single-precision float: 32 bits (4 bytes)—this is often the default

Double-precision float: 64 bits (8 bytes)

• Number of parameters required for a model:

Parametric model: sum of all parameters

Non-parametric model: number of representations (for example, decision trees) *
number of a representation's parameters

• Then you multiply additional factors:

Models using backpropagation: overall memory * 2

Models using batching: overall memory * batch size

Models using (recurrent) states: memory per state * number of recurrent steps

While this use case seems very similar, let's move on to the next use case where we are
given a large dataset that cannot be copied onto every machine.

Training a model ensemble on large datasets in parallel

The next thing we will discuss is a very common optimization within ML, particularly
when training models on large datasets. In order to train models, we usually require
a large amount of data, which rarely all fits into the memory of a single machine.
Therefore, it is often required to split the data into chunks and train multiple individual
models on the different chunks.

306 | Distributed machine learning on Azure

The Figure 10.4 shows two ways of splitting data into smaller chunks—by splitting the
rows horizontally (left) or by splitting the columns vertically (right):

Figure 10.4: Horizontal versus vertical partitioning

You could also mix both techniques to extract a subset from your training data.
Whenever you are using tools from the big data domain, such as MapReduce, Hive, or
Spark, partitioning your data will help you to speed up your training process or enable
training over huge amounts of data in the first place.

A good example for performing data-distributed training is to train a massive tree
ensemble of completely separate decision tree models, also called a random forest.
By splitting the data into many thousands of randomized chunks, you can train one
decision tree per chunk of data and combine all of the trained trees into a single
ensemble model. Apache Hivemall is a library based on Hive and Spark that does exactly
this on either of the two execution engines. Here is an example of training multiple
XGBoost multi-class ensemble models on Hive using HiveQL and Apache Hivemall:

-- explicitly use 3 reducers

-- set mapred.reduce.tasks=3;

create table xgb_softmax_model as select

train_xgboost(features, label,

'-objective multi:softmax -num_class 10 -num_round 10') as (model_id, model)

from (

select features, (label - 1) as label from data_train

cluster by rand(43) -- shuffle data to reducers

) data;

Exploring methods for distributed ML | 307

In the preceding function, we use the cluster keyword to randomly move rows of data
to the reducers. This will partition the data horizontally and train an XGBoost model
per partition on each reducer. By defining the number of reducers, we also define
the number of models trained in parallel. The resulting models are stored in a table
where each row defines the parameters of one model. In a prediction, we would simply
combine all individual models and perform average-voting criterion to retrieve the final
result.

Another example of this approach would be a standard Spark pipeline that trains
multiple independent models on vertical and horizontal data partitions. When we've
finished training the individual models, we can use average-voting criterion during
inference to find the optimal result for a prediction task. Here is a small example script
of training multiple models on horizontally partitioned data in parallel using Python,
PySpark, and scikit-learn:

read the input data

df = spark.read.parquet("data/")

define your training function

from sklearn.ensemble import RandomForestClassifier def train_model(data):

 clf = RandomForestClassifier(n_estimators=10)
 return clf.fit(data['train_x'], data['train_y'])

split your data into partitions and train models num_models = 100

models = df.rdd.repartition(num_models)

 .mapPartitions(train_model)

 .collect()

In the preceding function, we can now load almost any amount of data and repartition
it such that each partition fits into the local memory of a single node. If we have 1 TB
of training data, we could split it into 100 partitions of 10 GB chunks of data, which we
distribute over 10 12-core worker nodes with 128 GB RAM each. The training time will,
at most, take a couple of seconds for the training of the 100 models in parallel. Once all
the models are trained, we use the collect() function to return all trained models to
the head node.

308 | Distributed machine learning on Azure

We could have also decided to just store the models from each individual worker to
disk or in a distributed filesystem, but it might be nicer to just combine the results on
a single node. You see, in this example, we have the freedom to choose either of the
two methods, because all models are independent of each other. This is not true for
cases where the models are suddenly dependent on each other, for example, when
minimizing a global gradient, or splitting a single model over multiple machines, which
are both common use cases when training DNNs in the same way. In this case, we need
some new operators to steer the control flow of the data and gradients. Let's look into
these operators in the following section.

Fundamental building blocks for distributed ML

As we saw in the previous example, we need some fundamental building blocks or
operators to manage the data flow in a distributed system. We call these operators
collective algorithms. These algorithms implement common synchronization and
communication patterns for distributed computing and are required when training
ML models. Before we jump into distributed training methods for DNNs, we will have a
quick look into these patterns to understand the foundations.

The most common communication patterns in distributed systems are as follows:

• One-to-one

• One-to-many (also called broadcast or scatter)

• Many-to-one (also called reduce or gather)

• Many-to-many (also called all reduce or all gather)

Figure 10.5 gives a great overview of these patterns and shows how the data flows
between the individual actors of the system:

Figure 10.5: An overview of distributed communication primitives

Exploring methods for distributed ML | 309

We can immediately think back to the hyperparameter optimization technique of
Bayesian optimization. First, we need to broadcast the training data from the master
to all worker nodes. Then we can choose parameter combinations from the parameter
space on the master and broadcast those to the worker nodes as well. Finally, we
perform the training on the worker nodes, before then gathering all the model
validation scores from the worker nodes on the master. By comparing the scores and
applying Bayes' theorem, we can predict the next possible parameter combinations and
repeat broadcasting them to the worker nodes.

Did you notice something in the preceding algorithm? How can we know that all
worker nodes finished the training process and we gathered all scores from all worker
nodes? To do this, we will use another building block called synchronization, or barrier
synchronization. With barrier synchronization, we can schedule the execution of a task
such that it needs to wait for all other distributed tasks to be finished. The following
Figure 10.6 shows a good overview of the synchronization pattern in multi-processors:

Figure 10.6: Synchronization pattern in multi-processors

As you can see, we implicitly used these algorithms already in the previous chapter,
where they were hidden from us behind the term optimization. Now we will use them
explicitly by changing the optimizers in order to train a single model over multiple
machines.

As you might have already realized, these patterns are not new and are used by your
operating system many times per second. However, in this case, we can take advantage
of these patterns and apply them to the execution graph of a distributed training
process, and through specialized hardware (for example, by connecting two GPUs
together using InfiniBand).

310 | Distributed machine learning on Azure

In order to use this collective algorithm with a different level of hardware support
(GPU support and vectorization), you need to select a communication backend.
These backends are libraries that often run as a separate process and implement
communication and synchronization patterns. Popular libraries for collective algorithms
include Gloo, MPI, and NCCL.

Most DL frameworks, such as PyTorch or TensorFlow, provide their own higher-
level abstractions on one of these communication backends, for example, PyTorch
RPC and TensorFlow parameter server. Instead of using a different execution and
communication framework, you could also choose a general-purpose framework for
distributed computing, such as Spark.

As you can see, the list of possible choices is endless and multiple combinations are
possible. We haven't even talked about Horovod, a framework used to add distributed
training to other DL frameworks through distributed optimizers. The good part is that
most of these frameworks and libraries are provided in all Azure Machine Learning
runtimes as well as being supported through the Azure Machine Learning SDK. This
means you will often only specify the desired backend, supply your model to any
specific framework, and let Azure Machine Learning handle the setup, initialization,
and management of these tools. We will see this in action in the second half of this
chapter.

Speeding up DL with data-parallel training

Another variation of distributed data-parallel training is very common in DL. In order
to speed up the training of larger models, we can run multiple training iterations with
different chunks of data on distributed copies of the same model. This is especially
crucial when each training iteration takes a significant amount of time (for example,
multiple seconds), which is a typical scenario for training large DNNs where we want to
take advantage of multi-GPU environments.

Data-distributed training for DL is based on the idea of using a distributed gradient
descent algorithm:

1. Distribute a copy of the model to each node.

2. Distribute a chunk of data to each node.

3. Run a full pass through the network on each node and compute the gradient.

4. Collect all gradients on a single node and compute the average gradient.

5. Send the average gradient to all nodes.

6. Update all models using the average gradient.

Exploring methods for distributed ML | 311

The Figure 10.7 shows this in action for multiple models, running the forward/backward
pass individually and sending the gradient back to the parameter server:

Figure 10.7: Distributed gradient descent using a parameter server

As seen here, the server computes the average gradient, which is sent back to all
other nodes. We can immediately see that, all of a sudden, communication is required
between the worker nodes and a master node (let's call it the parameter server), and
that synchronization is required too while waiting for all models to finish computing the
gradient.

A great example of this use case is speeding up the training process of DL models by
parallelizing the backpropagation step and combining the gradients from each node
to an overall gradient. TensorFlow currently supports this distribution mode using
a so-called parameter server. The Horovod framework developed at Uber provides
a handy abstraction for distributed optimizers and plugs into many available ML
frameworks or distributed execution engines, such as TensorFlow, PyTorch, and Apache
Spark. We will take a look at practical examples of using Horovod and Azure Machine
Learning in the Horovod – a distributed DL training framework section.

312 | Distributed machine learning on Azure

Training large models with model-parallel training

Lastly, another common use case in DL is to train models that are larger than the
provided GPU memory of a single GPU. This approach is a bit more tricky as it
requires the model execution graph to be split among different GPUs or even different
machines. While this is not a big problem in CPU-based execution, and is often done in
Spark, Hive, or TensorFlow, we also need to transfer the intermediate results between
multiple GPU memories. In order to do this effectively, extra hardware and drivers such
as InfiniBand (GPU-to-GPU communication) and GPUDirect (efficient GPU memory
access) is required.

The Figure 10.8 displays the difference between computing multiple gradients in parallel
(on the left) and computing a single forward pass of a distributed model (on the right):

Figure 10.8: The difference between distributed gradient descent and a distributed model

The latter is a lot more complicated as data has to be exchanged during forward and
backward passes between multiple GPUs and/or multiple nodes.

In general, we choose between two scenarios: multi-GPU training on a single machine
and multi-GPU training on multiple machines. As you might expect, the latter is a
lot more difficult, as it requires communication between and the synchronization of
multiple machines over a network.

Exploring methods for distributed ML | 313

Here is a simple Python script to train a small model on multiple GPUs using PyTorch:

import torch

import torch.nn as nn

import torch.optim as optim

class ParallelModel(nn.Module):

 def init (self):

 super(ParallelModel, self). init ()

 self.net1 = torch.nn.Linear(10, 10).to('cuda:0')

 self.relu = torch.nn.ReLU()

 self.net2 = torch.nn.Linear(10, 5).to('cuda:1')

 def forward(self, x):

 x = self.relu(self.net1(x.to('cuda:0')))
 return self.net2(x.to('cuda:1'))

model = ParallelModel() loss_fn = nn.MSELoss()

optimizer = optim.SGD(model.parameters(), lr=0.001)

optimizer.zero_grad()

outputs = model(torch.randn(20, 10))
labels = torch.randn(20, 5).to('cuda:1')
loss_fn(outputs, labels).backward()
optimizer.step()

As you can see, we now split individual layers to run on multiple GPUs, while the data
between these layers needs to be transferred during forward and backward passes. We
observe in the preceding code example that we now apply code changes to the model
itself, in order to specify which parts of the model should run on which GPU.

Note

Please note that we could also make this split dynamic, such that we split the
model into x consecutive subgraphs that are executed on x GPUs.

It's interesting to note that many of the techniques discussed in this chapter can be
combined. We could, for example, train one multi-GPU model per machine, while
partitioning the data into chunks and computing multiple parts of the gradient on
multiple machines—hence adopting a data-distributed model-parallel approach.

314 | Distributed machine learning on Azure

Using distributed ML in Azure
The Exploring methods for distributed ML section contained an overwhelming amount
of different parallelization scenarios, various communication backends for collective
algorithms, and code examples using different ML frameworks and even execution
engines. The amount of choice when it comes to ML frameworks is quite large and
making an educated decision is not easy. This choice gets even more complicated when
some frameworks are supported out of the box in Azure Machine Learning while others
have to be installed, configured, and managed by the user.

In this section, we will go through the most common scenarios, learn how to choose the
correct combination of frameworks, and implement a distributed ML pipeline in Azure.

In general, you have three choices for running distributed ML in Azure:

• The first obvious choice is using Azure Machine Learning, the Notebook
environment, the Azure Machine Learning SDK, and Azure Machine Learning
compute clusters. This will be the easiest solution for many complex use cases.
Huge datasets can be stored on Azure Blob storage and models can be trained
as data-parallel and/or model-parallel models with different communication
backends. Everything is managed for you by wrapping your training script with an
estimator abstraction.

• The second choice is to use a different authoring and execution engine for your
code instead of Azure Machine Learning notebooks and Azure Machine Learning
compute clusters. A popular option is Azure Databricks with integrated interactive
notebooks and Apache Spark as a distributed execution engine. Using Databricks,
you can use the pre- built ML images and auto scaling clusters, which provides a
great environment for running distributed ML training.

• The third choice is to build and roll out your own custom solution. To do so,
you need to build a separate cluster with virtual machines or Kubernetes and
orchestrate the setup, installation, and management of the infrastructure and
code. While this is the most flexible solution, it is also, by far, the most complex
and time consuming to set up. For this book, we will first look into Horovod
optimizers, Azure Databricks, and Apache Spark before diving deeper into Azure
Machine Learning.

Using distributed ML in Azure | 315

Horovod—a distributed DL training framework

Horovod is a framework for enabling distributed DL and was initially developed and
made open source by Uber. It provides a unified way to support the distributed training
of existing DL training code for the following supported frameworks—TensorFlow,
Keras, PyTorch, and Apache MXNet. The design goal was to make the transition from
single node training to data-parallel training extremely simple for any existing project,
and hence enable these models to train faster on multiple GPUs in a distributed
environment.

Horovod is an excellent choice as a drop-in replacement for optimizers in any of the
supported frameworks for data-parallel training. It integrates nicely with the supported
frameworks through initialization and update steps or update hooks, by simply
abstracting the GPUs from the DL code. From a user's perspective, only minimal code
changes have to be done to support data-parallel training for your model. Let's take a
look at an example using Keras and implement the following steps:

1. Initialize Horovod.

2. Configure Keras to read GPU information from Horovod.

3. Load a model and split training data.

4. Wrap the Keras optimizer as a Horovod distributed optimizer.

5. Implement model training.

6. Execute the script using horovodrun.

The detailed steps are as follows:

1. The first step is very similar for any script using Horovod—we first need to load
horovod from the correct package and initialize it:

import horovod.keras as hvd hvd.init()

2. Next, we need to perform a custom setup step, which varies depending on the
framework used. This step will set up the GPU configuration for the framework,
and ensure that it can call the abstracted versions through Horovod:

from keras import backend as K
import tensorflow as tf
pin GPU to be used to process local rank (one GPU per process) config =
tf.ConfigProto()
config.gpu_options.allow_growth = True config.gpu_options.visible_device_
list = str(hvd.local_rank()) K.set_session(tf.Session(config=config))

316 | Distributed machine learning on Azure

3. Now, we can simply take our single-node, single-GPU Keras model and define
all the parameters, and the training and validation data. There is nothing special
required during this step:

standard model and data
batch_size = 10
epochs = 100
model = load_model(...)
x_train, y_train = load_train_data(...) x_test, y_test = load_test_
data(...)

4. Finally, we arrive at the magical part, where we wrap the framework optimizer—
in this case, Adadelta from Keras—as a Horovod distributed optimizer. For all
subsequent code, we will simply use the distributed optimizer instead of the plain
one. We also need to adjust the learning rate to the number of used GPUs, as the
resulting gradient will be averaged from the individual changes. This can be done
using the following code:

adjust learning rate based on number of GPUs opt = keras.optimizers.
Adadelta(1.0 * hvd.size())

add Horovod Distributed Optimizer opt = hvd.DistributedOptimizer(opt)

5. The remaining part looks fairly simple. It involves compiling the model, fitting the
model, and evaluating the model, just like the single-node counterpart. It's worth
mentioning that we need to add a callback to initialize all gradients during the
training process:

model.compile(loss=keras.losses.categorical_crossentropy, optimizer=opt,
metrics=['accuracy'])
callbacks = [
 hvd.callbacks.BroadcastGlobalVariablesCallback(0),
]
model.fit(x_train, y_train,
 batch_size=batch_size,
 callbacks=callbacks, epochs=epochs,
 verbose=1 if hvd.rank() == 0 else 0,
 validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

Using distributed ML in Azure | 317

When looking at the preceding code, it's fair to say that Horovod is not over-promising
on making it easy to extend your code for distributed execution using a data-parallel
approach and distributed gradient computation. If you have looked into the native
TensorFlow or PyTorch versions, you will see that this requires far fewer code changes
and is a lot more readable and portable than a parameter server or RPC framework.

The Horovod framework uses an MPI communication backend to handle collective
algorithms under the hood, and usually requires one running process per GPU per
node. However, it can also run on top of the Gloo backend or a custom MPI backend
through a configuration option. Here is a sample snippet of how to use the horovodrun
command to start a training process on two machines, server1 and server2, each using
four separate GPUs:

$ horovodrun -np 8 -H server1:4,server2:4 python train.py

Running and debugging Horovod on your own cluster can still be painful when you
only want to speed up your training progress by scaling out your cluster. Therefore,
Azure Machine Learning compute provides a wrapper that does all the heavy lifting for
you, requiring only a training script with Horovod annotations. We will see this in the
Running Horovod on Azure Machine Learning compute section.

Model-parallel training can be combined with Horovod by using the model-parallel
features of the underlying framework and using only one Horovod process per machine
instead of per GPU. However, this is a custom configuration and is currently not
supported in Azure Machine Learning.

Implementing the HorovodRunner API for a Spark job

In many companies, ML is an additional data processing step on top of existing data
pipelines. Therefore, if you have huge amounts of data and you are already managing
Spark clusters or using Azure Databricks to process that data, it is easy to also add
distributed training capabilities.

As we have seen in the Exploring methods for distributed ML section of this chapter,
we can simply train multiple models using parallelization, or by partitioning the
training data. However, we could also train DL models and benefit from distributed ML
techniques to speed up the training process.

When using the Databricks ML runtime, you can leverage Horovod for Spark
to distribute your training process. This functionality is available through the
HorovodRunner API and is powered by Spark's barrier mode execution engine to provide
a stable communication backend for long-running jobs. Using HorovodRunner on the
head node, it will send the training function to the workers and start the function using
the MPI backend. This all happens under the hood within the Spark process.

318 | Distributed machine learning on Azure

Again, this is one of the reasons why Horovod is quite easy to use, as it is literally just
a drop-in replacement for your current optimizer. Imagine that you usually run your
Keras model on Azure Databricks using the PySpark engine. However, you would like
to add Horovod to speed up the training process by leveraging other machines in the
cluster and splitting the gradient descent over multiple machines. In order to do so,
you would have to add literally only two lines of code to the example from the previous
section, as seen here:

hr = HorovodRunner(np=2)

def train():

 # Perform your training here..
 import horovod.keras as hvd

 hvd.init()

 ...

hr.run(train)

In the preceding code, we observe that we only need to initialize HorovodRunner()
with the number of worker nodes. Calling the run() method with the training function
will automatically start the new workers, the MPI communication backend, send the
training code to the workers, and execute the training in parallel. Therefore, you can
now add data- parallel training to your long-running Spark ML jobs.

Running Horovod on Azure Machine Learning compute

One of the benefits of moving to a cloud service is that you can consume functionality
as a service rather than managing infrastructure on your own. Good examples are
managed databases, lambda functions, managed Kubernetes, or container instances,
where choosing a managed service means that you can focus on your application code,
while the infrastructure is managed for you in the cloud.

Azure Machine Learning sits in a similar spot where you can consume many of the
different functionalities through an SDK (such as model management, optimization,
training, and deployments) so you don't have to maintain an ML cluster infrastructure.
This brings a huge benefit when it comes to speeding up DNNs through distributed
ML. If you have stuck with Azure Machine Learning compute until now, then moving
to data-parallel training is as difficult as adding a single parameter to your training
configuration—for any of the various choices discussed in this chapter.

Using distributed ML in Azure | 319

Let's think about running the Keras training script in data-parallel mode using a
Horovod optimizer in a distributed environment. You need to make sure all the correct
versions of your tools are set up (from CUDA to cuDNN, GPUDirect, MPI, Horovod,
TensorFlow, and Keras) and play together nicely with your current operating system
and hardware. Then, you need to distribute the training code to all machines, start
the MPI process, and then call the script using Horovod and the relevant command-
line argument on every machine in the cluster. And we haven't even talked about
authentication, data access, or auto-scaling.

With Azure Machine Learning, you get a ML environment that just works and will be
kept up to date for you. Let's take a look at the previous Horovod and Keras training
script, which we store in a train.py file. Now, similar to the previous chapters, we
create an estimator to wrap the training call for the Azure Machine Learning SDK. To
enable multi-GPU data-parallel training using Horovod and the MPI backend, we simply
add the relevant parameters. The resulting script looks like the following snippet:

from azureml.train.dnn import TensorFlow, Mpi

estimator = TensorFlow(source_directory=project_folder,

 compute_target=compute_target, entry_script='train.py',

 script_params=script_params, node_count=2,

 distributed_training=Mpi(process_count_pernode=1),

 pip_packages=['keras'],

 framework_version='1.13',

 use_gpu=True)

Using the use_gpu flag, we can enable GPU-specific machines and their corresponding
images with pre-compiled binaries for our Azure Machine Learning compute cluster.
Using node_count and process_count_per_node, we specify the level of concurrency for
the data-parallel training, where process_count_per_node should correspond with the
number of GPUs available per node. Finally, we set the distributed_backend parameter
to mpi, to enable the MPI communication backend for this estimator. Another possible
option would be using ps to enable the TensorFlow ParameterServer backend.

Finally, to start up the job, we simply submit the experiment, which will automatically
set up the MPI session on each node and call the training script with the relevant
arguments for us. I don't know how you feel about this, but for me, this is a really big
step forward from the previous manual examples. The following line shows how you can
submit the experiment:

run = experiment.submit(estimator)

320 | Distributed machine learning on Azure

Wrapping your training as part of an Azure Machine Learning estimator gives you the
benefit of fine- tuning your training script configuration for multiple environments, be
it multi-GPU data- parallel models for distributed gradient descent training or single-
node instances for fast inference. By combining distributed DL with Azure Machine
Learning compute auto-scaling clusters, you can get the most from the cloud by
using pre-built managed services, instead of manually fiddling with infrastructure and
configurations.

Summary
Distributed ML is a great approach to scaling out your training infrastructure in order
to gain speed in your training process. It is applied in many real-world scenarios and is
very easy to use with Horovod and Azure Machine Learning.

Parallel execution is similar to hyperparameter search, while distributed execution is
similar to Bayesian optimization, which we discussed in detail in the previous chapter.
Distributed executions need methods to perform communication (such as one-to-
one, one- to-many, many-to-one, and many-to-many) and synchronization (such as
barrier synchronization) efficiently. These so-called collective algorithms are provided
by communication backends (MPI, Gloo, and NCCL) and allow efficient GPU-to-GPU
communication.

DL frameworks build higher-level abstractions on top of communication backends
to perform model-parallel and data-parallel training. In data-parallel training, we
partition the input data to compute multiple independent parts of the model on
different machines and add up the results in a later step. A common technique in DL
is distributed gradient descent, where each node performs gradient descent on a
partition of the input batch, and a master collects all the separate gradients to compute
the overall average gradient of the combined model. In model-parallel training, you
distribute a single model over multiple machines. This is often the case when a model
doesn't fit into the GPU memory of a single GPU.

Summary | 321

Horovod is an abstraction on top of existing optimizers of other ML frameworks, such
as TensorFlow, Keras, PyTorch, and Apache MXNet. It provides an easy-to-use interface
to add data-distributed training to an existing model without many code changes.
While you could run Horovod on a standalone cluster, Azure Machine Learning provides
good integration by wrapping its functionality as an estimator object. You learned
how to run Horovod on an Azure Machine Learning compute cluster to speed up your
training process through distributed ML with a few lines of Horovod initialization and a
wrapper over the current optimizer.

In the next chapter, we will use all the knowledge from the previous chapters to train
recommendation engines on Azure. Recommendation engines often build on top of
other NLP feature extraction or classification models and hence combine many of the
techniques we have learned about so far.

In the previous chapter, we discussed distributed training methods for machine
learning (ML) models, and you learned how to train distributed ML models efficiently
in Azure. In this chapter, we will dive into traditional and modern recommendation
engines, which often combine technologies and techniques covered in the previous
chapters.

First, we will take a quick look at the different types of recommendation engines, what
data is needed for each type, and what can be recommended using these different
approaches.

This will help you understand when to choose from non-personalized, content-based,
or rating-based recommenders.

Building a
recommendation

engine in Azure

11

324 | Building a recommendation engine in Azure

After this, we will dive into content-based recommendations, namely item-item and
user- user recommenders based on feature vectors and similarity. You will learn
about cosine distance to measure the similarity between feature vectors and feature
engineering techniques to avoid common pitfalls while building content-based
recommendation engines.

Subsequently, we will discuss rating-based recommendations that can be used once
enough user-item interaction data has been collected. You will learn the difference
between implicit and explicit ratings, develop your own implicit metric function, and
think about the recency of user ratings.

In the section following this, we will combine both content-and rating-based
recommenders into a single hybrid recommender and learn about state-of-the-art
techniques for modern recommendation engines. You will implement two hybrid
recommenders using Azure Machine Learning, one using Python and one using Azure
Machine Learning designer—the graphical UI of Azure Machine Learning.

In the last section, we will look into an online recommender system as a service using
reinforcement learning—Azure Personalizer. Having understood both content- and
rating- based methods, you will learn how to improve your recommendations on the fly
using a fitness function and online learning.

The following topics will be covered in this chapter:

• Introduction to recommender engines

• Content-based recommendations

• Collaborative filtering—a rating-based recommendation engine

• Combining content and ratings in hybrid recommendation engines

• Automatic optimization through reinforcement learning

Introduction to recommender engines
In today's digital world, recommendation engines are ubiquitous among many
industries. Many online businesses, such as streaming, shopping, news, and social
media, rely at their core on recommending the most relevant articles, news, and items
to their users. How often have you clicked on a suggested video on YouTube, scrolled
through your Facebook feed, listened to a personalized playlist on Spotify, or clicked on
a recommended article on Amazon?

Introduction to recommender engines | 325

If you ask yourself what the term relevant means for the different services and
industries, you are on the right track. In order to recommend relevant information to
the user, we need to first define a relevancy metric, and a way to describe and compare
different items and their similarity. These two properties are the key to understanding
the different recommendation engines. We will learn more about this in the following
sections of this chapter.

While the purpose of a recommendation engine is clear to most people, the different
approaches are usually not. Hence, in order to better understand this, in this
chapter, we will compare the different types of recommender systems and give some
examples of them that you might have seen in the wild. It's also worth mentioning
that many services implement more than one of these approaches to produce great
recommendations.

The easiest recommendation engines and methods are non-personalized
recommendations. They are often used to show global interest (for example, Twitter
global trends, popular Netflix shows, and a news website's front page) or trends where
no user data is available. A good example is the recommendations of any streaming
service that appear when you register and log into the service for the first time.

Once you log into a web service and start using it moderately, you are usually
confronted with content-based recommendations. Content-based recommenders look
for similar items or items of similar users based on the item and user profile features.
User profile items could include the following:

• Age

• Gender

• Nationality

• Country of residence

• Mother tongue

Imagine logging into Amazon without having bought anything there yet. Most
recommended items will be similar to the ones you just viewed or the ones matching
your demographics and location.

326 | Building a recommendation engine in Azure

Once enough interaction data is available, you will start seeing rating-based
recommendations, a method that is also called collaborative filtering. In rating-based
recommenders, the users' interactions with items are transformed into explicit or
implicit ratings. Based on these ratings, recommendations are made based on similar
recommendations given by other users. Rating a movie on Netflix is an explicit rating,
while watching a full 20-minute documentary on YouTube is an implicit rating.
Therefore, a user will be shown movies liked by other people who also liked the movie
that you just rated. And similarly, YouTube will show videos watched by other users who
also watched the video you just saw.

Note

Microsoft provides many different implementations for popular recommendation
engines in their GitHub repository at https://github.com/Microsoft/Recommenders.
This makes it easy to get started, pick the right algorithm, and implement, train,
and deploy a recommendation engine on Azure.

The next natural step is to combine both content and rating-based recommenders into
a single hybrid recommendation engine that can deal with both user ratings and cold-
start users who are users, without ratings. The benefit of this approach is that both
recommender systems are optimized together and create a combined recommendation.
Azure Machine Learning designer provide the building blocks to train and deploy the
Matchbox Recommender, an online Bayesian hybrid recommendation engine built by
Microsoft Research.

The most exciting new development in the past year was the introduction of hybrid
online recommender optimization based on reinforcement learning. By providing
a fitness function for the user rating, the algorithm can continuously learn to
optimize this function. In the last section of this chapter, we will take a look at Azure
Personalizer, a reinforcement learning-based recommendation engine as a service.

Let's dive right into the methods discussed and develop some example solutions for
scalable recommendation engines in Azure.

Content-based recommendations
We first start with content-based recommendations, as they are the most similar to
what we previously discussed in this book. The term content refers to the usage of
only an item's or user's content information in the shape of a (numeric) feature vector.
The way to arrive at a feature vector from an item (an article in a web shop) or a user
(a browser session in a web service) is through data mining, data pre-processing and
feature engineering—skills you learned in Chapter 4, ETL, data preparation, and feature
extraction, and Chapter 6, Advanced feature extraction with NLP.

https://github.com/Microsoft/Recommenders

Content-based recommendations | 327

Using users' and items' feature vectors, we can divide content-based recommendations
into roughly two approaches:

• Item-item similarity

• User-user similarity

Hence, recommendations are based on the similarity of items or the similarity of users.
Both approaches work great in cases where little to no interaction data between user
and items is available for example, a user with no purchase history on Amazon, no
search history on YouTube, or no movies yet watched on Netflix—the so-called cold-
start problem.

You will always have to deal with the cold-start problem the moment you decide to
roll out recommendations or the moment a new user starts using your service. In both
cases, you don't have sufficient user-item interactions (so-called ratings) available and
need to recommend items based on content only.

For the first approach, we design a system that recommends similar items to the
one a user interacts with. The item similarity is based on the similarity of the item's
feature vectors—we see in the subsequent section how to compute this similarity. This
approach can be used when absolutely no user interaction data is available. The Figure
11.1 visualizes this approach of recommending similar items based on content features
and a single user interaction:

Figure 11.1: Recommendation based on content features

328 | Building a recommendation engine in Azure

Creating a playlist on Spotify will yield a box with recommended songs in the bottom, as
shown in Figure 11.2. We can see that the recommended songs are based on the songs in
the playlist—hence, similar content:

Figure 11.2: An example of content-based recommendation: Spotify-recommended songs for a playlist

We can see songs listed that are similar to the ones in the playlist—similar in terms of
genre, style, artists, and many more features.

Clicking on a product on Amazon will yield a box with related products on the bottom
of the page, as shown in Figure 11.3. Again, similar products means it is a content-based
recommendation:

Figure 11.3: An example of content-based recommendation: related products on Amazon

Content-based recommendations | 329

This recommendation has nothing to do with your previous shopping experience and
can be displayed even when no user-purchase history is found.

In the second approach, the system recommends similar users based on a user profile.
From those similar users, we can then select the favorite items and present it as a
recommendation. Please note that in digital systems, the user profile can be implicitly
defined via location (for example, through an IP address), language, demographic, and
device fingerprinting. This technique can be used when user-item interaction data is
available from other users but not for the current user. The Figure 11.4 visualizes this
recommendation of the purchases of a similar user based on user features:

Figure 11.4: Recommendation based on user features

From a user's perspective, it is usually hard to distinguish between this kind of
recommendation and a non-personalized recommendation, for example, the top
products in your location for your demographic or your language—all properties that
can be extracted from your browser's fingerprint.

Measuring similarity between items

The crucial part of training a content-based recommendation engine is to specify a
metric that can measure and rank the similarity between two items. A popular choice is
to use the cosine distance between the items' feature vectors to measure the similarity
between two items. The cosine distance is computed as 1 - cos(f1, f2) between two
vectors or 1 minus the cosine similarity. The Figure 11.5 shows two numeric feature
vectors and the cosine distance between them:

330 | Building a recommendation engine in Azure

Figure 11.5: A representation of two numeric feature vectors and the cosine distance

Hence, the cosine distance of two feature vectors yields a value between 0, where both
vectors are pointing in the same direction, and 1, where both vectors are orthogonal to
each other. We conclude that at value 0, the feature vectors are the same, whereas at
value 1, the feature vectors are completely different.

If you are unsure, you can always compute the cosine distance between two feature
vectors using the following code (make sure that your DataFrame df has no additional id
column and all columns are numeric):

from scipy import spatial

f1 = df.iloc[0, :]

f2 = df.iloc[1, :]

compute the cosine distance between the first 2 rows
cosine_d = spatial.distance.cosine(f1, f2)
print(cosine_d)

Looking at the preceding snippet, I recommend you pick a few rows from your dataset,
estimate their similarity (0 if they are the same, 1 if they are completely different),
and then compute the cosine distance using the aforementioned approach. If your
guess and the computed approach are very different and you don't understand the
reason, you'd better go back to data pre-processing and feature engineering. In the
next section, you will learn the most common mistakes in feature engineering for
recommender systems.

Content-based recommendations | 331

Feature engineering for content-based recommenders

Training a content-based recommendation engine is very similar to training a classical
ML model. For the end-to-end ML pipelines, all the steps, such as data preparation,
training, validation, optimization, and deployment, are exactly the same and use very
similar or even the same tools and libraries as any traditional embedding, clustering,
regression, or classification technique.

As for most other ML algorithms, great feature engineering is the key for good results
from the recommendation engine. The difficulty for clustering-based recommenders is
that most of the embeddings and similarity metrics only work in numeric space. While
other techniques, such as tree-based classifiers, give you more freedom in the structure
of the input data, many clustering techniques require numeric features.

Another important factor for training content-based recommenders is the semantic
meaning of categorical features. Therefore, you most likely want to use advanced NLP
methods to embed categorical features into numerical space to capture this semantic
meaning and provide it for the recommendation engine. The reason for the effect
of categorical features in recommendation systems is based on the way similarity is
measured.

As we discussed in the previous section, similarity is often expressed/measured
as cosine similarity, and hence computing the cosine between two feature vectors.
Therefore, even if there is only a single different character between two categorical
values, those categorical values would yield a similarity of 0 using one-hot encoding—
although they are semantically very similar. Using simple label encoding, the results are
even less obvious. With label encoding, the resulting similarity is now not only 0, but a
non-interpretable value different from 0.

Therefore, we recommend semantic embedding of nominal/textual variables in order
to capture their semantic meaning in numeric space and avoid common pitfalls with
categorical embeddings leaking into the similarity metric.

In general, there are two possible ways to implement content-based recommenders. If
you are looking for a pure similarity search, you can use any non-supervised embedding
and clustering technique for finding similar items or users. The second possibility is to
implement the recommender as a regression or classification technique. With this, you
can predict a discrete or continuous value of relevance for all items, solely considering
item features or combinations of item and user features. We will take a look at an
example method in the subsequent section.

332 | Building a recommendation engine in Azure

Content-based recommendations using gradient boosted trees

For our content-based model, we will use the Criteo dataset to predict the click-
through rate (CTR) per article based on some article features. We will use the
predicted CTR to recommend articles with the highest predicted CTR. As you can see,
it's very simple to formulate a content-based recommendation engine as a standard
classification or regression problem.

For this example, we will use a gradient-boosted tree regressor from LightGBM. The
model to predict the CTR is very similar to any regression model previously trained in
this book. Let's get started:

1. First, we define the parameters for the LightGBM model:

params = {
 'task': 'train',
 'boosting_type': 'gbdt',
 'num_class': 1,
 'objective': "binary",
 'metric': "auc",
 'num_leaves': 64,
 'min_data': 20,
 'boost_from_average': True,
 'feature_fraction': 0.8,
 'learning_rate': 0.15,
}

2. Next, we define the training and test set as LightGBM datasets:

lgb_train = lgb.Dataset(x_train, y_train.reshape(-1), params=params)
lgb_test = lgb.Dataset(x_test, y_test.reshape(-1), reference=lgb_train)

3. Using this information, we can now train the model:

lgb_model = lgb.train(params, lgb_train, num_boost_round=100)

4. Finally, we can evaluate the model performance by predicting the CTR and
computing the area under the ROC curve as an error metric:

y_pred = lgb_model.predict(x_test)
auc = roc_auc_score(np.asarray(y_test.reshape(-1)), np.asarray(y_pred))

Great—you have learned to create recommendations based on item similarities.
However, these recommendations have a poor diversity and will only recommend
similar items.

Collaborative filtering—a rating-based recommendation engine | 333

Therefore, they can be used when no user-item interaction data is available, but will
perform poorly once the user is active on your service. A better recommendation
engine would recommend a variety of different items to help users explore and
discover new and unrelated items they might like. This is exactly what we will do with
collaborative filtering in the next section.

Collaborative filtering—a rating-based recommendation engine
By recommending only similar items or items from similar users, your users might get
bored of the recommendations provided due to the lack of diversity and variety. Once a
user starts interacting with a service, for example, watching videos on YouTube, reading
and liking posts on Facebook, or rating movies on Netflix, we want to provide them
with great personalized recommendations and relevant content to keep them happy
and engaged. A great way to do so is to provide a good mix of similar content and new
content to explore and discover.

Collaborative filtering is a popular approach for providing such diverse
recommendations by comparing user-item interactions, finding other users who
interact with similar items, and recommending items that those users also interacted
with. It's almost as if you were to build many custom stereotypes and recommend other
items consumed from the same stereotype. Figure 11.6 illustrates this example:

Figure 11.6: Collaborative filtering—rating-based recommendation

As the person on the left buys similar items to the person on the right, we can
recommend a new item to the person on the right that the person on the left bought.
In this case, the user- item interaction is a person buying a product. However, in
recommender language, we speak about ratings as a term summarizing all possible
interactions between a user and an item. Let's take a look at building such a rating
function (also called a feedback function).

334 | Building a recommendation engine in Azure

One great example for amazing rating-based recommendations are the personalized
recommended playlists in Spotify, as shown in Figure 11.7. In contrast to the previous
Spotify recommendation at the bottom of each playlist, these recommendations are
personalized based on my interaction history and feedback:

Figure 11.7: An example of rating-based recommendation: Spotifys Made For You playlists

These playlists contain songs similar to the ones I listened to and that are also
listened to by other people with my taste. Another nifty extension is that the song
recommendations are categorized by genre into these six playlists.

What is a rating? Explicit feedback as opposed to implicit feedback

A feedback function (or rating) quantifies the interaction between a user and an item.
We differentiate between two types of feedback: explicit ratings (or non-observable
feedback) and implicit ratings (or directly observable feedback). An explicit rating would
be leaving a 5-star review of a product on Amazon, whereas an implicit rating is buying
said product.

While the former is a biased decision of the user, the latter can be objectively observed
and evaluated.

Collaborative filtering—a rating-based recommendation engine | 335

The most obvious form of rating is to explicitly ask the user for feedback, for example,
to rate a certain movie, song, article, or the helpfulness of a support document. This
is the method most people think about when first implementing recommendations
engines. In the case of an explicit rating, we cannot directly observe the user's
sentiment but rely on the user's ability to quantify their sentiment with a rating, such as
rating a movie on an ordinal scale from 1 to 5.

There are many problems with explicit ratings—especially on ordinal scales (for
example, stars from 1 to 5)—that we should consider when building our feedback
function. Most people will have a bias when rating items on an ordinal scale, for
example, some users might rate a movie 3/5 if they are unsatisfied and 5/5 if they liked
the movie, while other users might rate 1/5 for a bad movie, 3/5 for a good one and
only very rarely 5/5 for an exceptional one.

Therefore, the ordinal scales either need to be normalized across users or you'll need
to use a binary scale (such as thumbs up/thumbs down) to collect binary feedback.
Binary feedback is usually much easier to handle as we can remove the user bias
from the feedback function, simplify the error metric, and therefore provide better
recommendations. Many popular streaming services nowadays collect binary (thumbs
up/thumbs down, star/unstar, and so on) feedback.

Here is a little snippet to help normalize user ratings. It applies a normalization across
each group of user ratings:

import numpy as np

def normalize_ratings(df, rating_col="rating", user_col="user"):
 groups = df.groupby(user_col)[rating_col]

 # computes group-wise mean/std
 mean = groups.transform(np.mean)
 std = groups.transform(np.std)

 return (df[rating_col] - mean) / std
df["rating_normalized"] = normalize_ratings(df)

Another popular way to train recommender systems is to build an implicit feedback
function based on the direct observation of an implicit user rating. This has the benefit
that the user feedback is unbiased. Common implicit ratings include the user adding an
item to the cart, the user buying the item, the user scrolling to the end of the article,
the user watching the full video to the end, and so on.

336 | Building a recommendation engine in Azure

One additional problem to consider is that the way a user interacts with items will
change over time. This could be due to a user's habit due to consuming more and more
items on the service or changing user preferences. Recommending a video to you that
you once liked in your childhood might not be helpful to another adult. Similar to this
user drift, the popularity of items will also change over time. Recommending the song
Somebody that I used to know to a user today might not lead to the same effect as in
2011. Therefore, we also have to consider time and temporal drift in our item ratings
and feedback function.

The time drift of explicit or implicit ratings can be modeled using an exponential time
decay on the numeric rating. Depending on the business rules, we could, for example,
use explicit ratings with a binary scale [1, -1] and exponentially decay these ratings with
a half- life time of 1 year. Hence, after 1 year, a rating of 1 becomes 0.5, after 2 years, it
becomes 0.25, and so on. Here is a snippet to exponentially decay your ratings:

import numpy as np

def cumsum_days(s, duration='D'):

 diff = s.diff().astype('timedelta64[%s]' % duration)
 return diff.fillna(0).cumsum().values

def decay_ratings(df, decay=1, rating_col="rating", time_col="t"):
 weight = np.exp(-cumsum_days(df[time_col]) * decay)

 return df[rating_col] * weighthalf_life_t = 1

half_life_t = 1

df["rating_decayed"] = decay_ratings(df, decay=np.log(2)/half_life_t)

We learned that the choice of a proper feedback function matters greatly and is as
important for designing a rating-based recommendation engine as feature engineering
is for content-based recommenders.

Predicting the missing ratings to make a recommendation

Everything we have until now is a sparse user-item-rating matrix that looks similar to
the Figure 11.8. However, in order to make a recommendation, we first need to fill the
unknown ratings displayed gray in the diagram. Collaborative filtering is about filling
the blank rows or columns of the user-item-ratings matrix depending on the prediction
use case.

Collaborative filtering—a rating-based recommendation engine | 337

To recommend the best movie for Alice, we only need to compute the first row of the
rating matrix, whereas to compute the best candidates for Terminator, we only need
to compute the last column of the matrix. It is important to know that we don't have
to compute the whole matrix all the time, which helps to significantly improve the
recommendation performance:

Figure 11.8: A user item ratings matrix

You can also probably already guess that this matrix will get really, really large as the
number of users and/or items grows. Therefore, we need an efficient parallelizable
algorithm for computing the blank ratings in order to make a recommendation. The
most popular method to solve this problem is to use of matrix factorization and, hence,
decompose the matrix into a product of two lower dimensional matrices. These two
matrices and their dimensions can be interpreted as user trait and item trait matrices;
by way of analogy, the dimension refers to the number of different distinct traits—the
so called latent representation.

Once the latent representation is known, we can fill the missing ratings by multiplying
the correct rows and columns from the latent trait matrices. A recommendation can
then be made by using the top n highest computed ratings. But that's enough of the
theory – let's look at an example using the Alternating Least Square (ALS) method to
perform the matrix factorization in PySpark. Apart from the method, everything else in
the pipeline is exactly the same as in a standard ML pipeline.

Similar to all previous pipelines, we also compute a training and testing set
for validating the model performance using a grouped selection algorithm (for
example, LevePGroupsOut, and GroupShuffleSplit), perform training, optimize the
hyperparameters, validate the model test performance, and eventually stack multiple
models together. As in many other methods, most models are trained using gradient
descent. We can also use a standard regression loss function, such as the Root Mean
Square Error (RMSE), to compute the fit of our recommendations on the test set. Let's
dive into the example.

338 | Building a recommendation engine in Azure

Scalable recommendations using ALS factorization

To train a large collaborative filtering model using matrix factorization, we need an
algorithm that is easily distributable. The ALS algorithm of the Spark MLlib package
is an excellent choice—however, many other algorithms for factorizing matrices are
available, such as Bayesian personalized ranking, FastAI EmbeddingDotBias, or neural
collaborative filtering.

Note

A summary of example applications using the preceding methods can be found on
Microsoft's GitHub repository at https://github.com/Microsoft/Recommenders.

By using Spark, precisely PySpark—the Python bindings for Spark and its libraries—we
can take advantage of the distribution framework of Spark. While it's possible to run
Spark on a single-node, single-core process locally, it can be easily distributed to a
cluster with hundreds and thousands of nodes. Hence, it is a good choice as your code
automatically becomes scalable if your input data scales and exceeds the memory limits
of a single node:

1. Let's first create and parametrize an ALS estimator in PySpark using MLlib, the
standard ML library of Spark. We find ALS in the recommendation package of
MLlib:

from pyspark.ml.recommendation import ALS n_iter = 10
rank = 10
l2_reg = 1
als = ALS().setMaxIter(n_iter).setRank(rank).setRegParam(l2_reg)

In the preceding code, we initialize the ALS estimator and define the number of
iterations for gradient descent optimization, the rank of the latent trait matrices,
and the L2 regularization constant.

2. Next, we fit the model using this estimator:

model = als.fit(train_data)

https://github.com/Microsoft/Recommenders

Combining content and ratings in hybrid recommendation engines | 339

3. That's all we have to do. Once the model is successfully trained, we can now
predict the ratings for the test set by calling the transform function on the trained
model:

y_test = model.transform(test_data)

4. To compute the performance of the recommendations, we use a regression
evaluator and the rmse metric as a scoring function:

from pyspark.ml.evaluation import RegressionEvaluator scoring_fn =
RegressionEvaluator(
metricName="rmse", labelCol="rating", predictionCol="prediction")

5. To compute the rmse score, we simply call the evaluate method on the scoring
function:

rmse = scoring_fn.evaluate(y_test)

Great—you successfully implemented a rating-based recommendation engine with a
collaborative filtering approach by factorizing the user-item-ratings matrix. Have you
realized that this approach is similar to finding the eigenvectors of a matrix and that
these eigenvectors could be interpreted as user stereotypes (or user tastes, traits, and
so on)?

While this approach is great for creating diverse recommendations, it requires the
availability of (many) user-item ratings. Therefore, it would work great in a service with
a lot of user interaction and poorly with completely new users (the cold-start problem).

Combining content and ratings in hybrid recommendation engines
Instead of seeing rating-based recommenders as a successor to content-based
recommenders, you should consider them as a different recommender after having
acquired enough user-item interaction data to provide rating-only recommendations.
In most practical cases, a recommendation engine will exist for both approaches—either
as two distinct algorithms or as a single hybrid model. In this section, we will look into
training such a hybrid model.

340 | Building a recommendation engine in Azure

Building a state-of-the-art recommender using the Matchbox Recommender

To build a state-of-the-art recommender using the Matchbox Recommender, we
open Azure Machine Learning Designer, and add the building blocks for the Matchbox
Recommender to the canvas as shown in Figure 11.9. As we can see, the recommender
can now take ratings, and user and item features, as inputs to create a hybrid
recommendation model:

Figure 11.9: A hybrid recommendation model

In order to configure Matchbox Recommender, we need to configure the number of
traits and, hence, the dimensions of the latent space matrices. We set this value to 10.
Similar to the content-based recommender, instead of feeding raw unprocessed feature
vectors into the recommender, we should pre-process the data and encode categorical
variables using advanced NLP techniques.

Automatic optimization through reinforcement learning | 341

Once you have built the recommendation engine in Azure Machine Learning designer,
you simply press Run to train the model. You can also pull-request input and output
blocks to the canvas to deploy this model as a web service.

Currently, Matchbox Recommender is only available through the graphical interface.
However, you can use other hybrid models, such as Extreme Deep Factorization
Machines and Wide and Deep, to train hybrid recommenders from Python.

Automatic optimization through reinforcement learning
You can improve your recommendations by providing online training techniques, which
will retrain your recommender systems after every user-item interaction. By replacing
the feedback function with a reward function and adding a reinforcement learning
model, we can now make recommendations, take decisions, and optimize choices that
optimize the reward function.

This is a fantastic new approach to training recommender models. The Azure
Personalizer service offers exactly this functionality, to make and optimize decisions
and choices by providing contextual features and a reward function to the user. Azure
Personalizer uses contextual bandits, an approach to reinforcement learning that is
framed around making decisions or choices between discrete actions in a given context.

Note

Under the hood, Azure Personalizer uses the Vowpal Wabbit (https://github.com/
VowpalWabbit/vowpal_wabbit/wiki) learning system from Microsoft Research
to provide high-throughput, low-latency optimization for the recommendation
system.

From a developer's perspective, Azure Personalizer is quite easy to use. The basic
recommender API consists of two main requests, the rank request and the reward
request. During the rank request, we send the user features of the current user, plus all
possible item features, to the API and return a ranking of those items and an event ID in
the response.

Using this response, we can present the items to the user who will then interact with
these items. Whenever the user creates implicit feedback (for example, they click on an
item, or scroll to the end of the item), we make a second call to the service, this time to
the reward API. In this request, we only send the event ID and the reward (a numeric
value) to the service. This will trigger another training iteration using the new reward
and the previously submitted user and item features. Hence, with each iteration and
each service call, we optimize the performance of the recommendation engine.

https://github.com/VowpalWabbit/vowpal_wabbit/wiki
https://github.com/VowpalWabbit/vowpal_wabbit/wiki

342 | Building a recommendation engine in Azure

An example using Azure Personalizer in Python

Azure Personalizer SDKs are available for many different languages and are mainly
wrappers around the official REST API. In order to install the Python SDK, run the
following command in your shell:

pip install azure-cognitiveservices-personalizer

Now, go to the Azure portal and deploy an instance of Azure Personalizer from
your portal and configure the Rewards and Exploration settings as discussed in the
following paragraphs.

First, you need to configure how long the algorithm should wait to collect rewards
for a certain event, as shown in Figure 11.10. Up to this time, rewards are collected
and aggregated by the reward aggregation function. You can also define the model
update frequency, which allows you to train your model frequently when requiring
recommendations for quick-changing user behaviors. It makes sense to set the reward
time and model update frequency to the same value, for example, 10 minutes:

Figure 11.10: Computing the reward

In Figure 11.10, we can also select the aggregation function for rewards collected on the
same event during the reward wait time. Possible options are Earliest and Sum—hence,
using only the first reward or a sum over all rewards in the reward period.

Automatic optimization through reinforcement learning | 343

The Exploration setting makes the algorithm explore alternative patterns over time,
which is very helpful in discovering a diverse set of items through exploration. It can be
set through the percentage of rank calls used for exploration, as shown in Figure 11.11:

Figure 11.11: Configuring exploration

Hence, in 20% of the calls, the model won't return the highest ranked item but will
randomly explore new items and their rewards. It sounds reasonable that the value for
exploration should be greater than 0 to let the reinforcement algorithm try variations
of items over time—and to set it lower than 100% to avoid making the algorithm
completely random:

Note

Read more about configuring Azure Personalizer in the official documentation at
https://docs.microsoft.com/azure/cognitive-services/personalizer/how-to-settings.

1. Let's grab your resource key, open a Python environment, and start implementing
the rank and reward calls. First, we define the API URLs for both calls:

personalization_base_url =
"https://<your-resource-name>.cognitiveservices.azure.com/" resource_key =
"<your-resource-key>"
rank_url = personalization_base_url + "personalizer/v1.0/rank" reward_url
= personalization_base_url + "personalizer/v1.0/events/"

2. Next, we create a unique eventid function and an object containing the user
features of the current user and the item features of all possible actions. Once the
request is constructed, we can send it to the rank API:

eventid = uuid.uuid4().hex
data = {"eventid": eventid, "contextFeatures": user_features, "actions":
item_features}
response = requests.post(rank_url, headers=headers, json=data)

https://docs.microsoft.com/azure/cognitive-services/personalizer/how-to-settings

344 | Building a recommendation engine in Azure

3. The response contains the ranking of the possible items/actions and a probability
value, as well as the winning item under the rewardActionId property:

{
 "result": {
 "ranking": [
 {
 "id": "ai-for-earth", "probability": 0.664000034
 }, ...
],
 "eventId": "482d82bc-2ff8-4721-8e92-607310a0a415",
 "rewardActionId": "ai-for-earth"
 }
}

4. Let's parse rewardActionId from response—this contains the winning item and,
hence, the recommended action for the user:

prediction = json.dumps(response.json()["rewardActionId"]).
replace('"','')

5. Using this ranking, we can return the winning item to the user based on
rewardActionId. We now give the user some time to interact with the item. Finally,
we use this ID to return the tracked implicit feedback as a reward value to the
reward API:

response = requests.post(reward_url + eventid + "/reward",
headers=headers, json = {"value": reward})

That's all you need to embed a fully online self-training recommendation engine in
your application using Python and Azure Personalizer. It's that simple. As previously
mentioned, other SDKs that wrap the API calls are available for many other languages.

Note

A demo of Personalizer to test the reward function, as well as the request
and response of the service, can be found at https://personalizationdemo.
azurewebsites.net.

Detailed up-to-date examples for other languages are provided on GitHub at
https://github.com/Azure-Samples/cognitive-services-personalizer-samples.

https://personalizationdemo.azurewebsites.net
https://personalizationdemo.azurewebsites.net
https://github.com/Azure-Samples/cognitive-services-personalizer-samples

Summary | 345

Summary
In this chapter, we discussed the need for different types of recommendation engines,
from non-personalized ones to rating- and content-based ones, as well as hybrid
models.

We learned that content-based recommendation engines use feature vectors and
cosine similarity to compute similar items and similar users based on content alone.
This allows us to make recommendations via k-means clustering or tree-based
regression models. One important consideration is the embedding of categorical data,
which, if possible, should use semantic embedding to avoid confusing similarities based
on one-hot or label encodings.

Rating-based recommendations or collaborative filtering methods rely on user-item
interactions, so-called ratings or feedback. While explicit feedback is the most obvious
possibility for collecting user ratings through ordinal or binary scales, we need to make
sure that those ratings are properly normalized.

Another possibility is to directly observe the feedback through implicit ratings; for
example, a user bought a product, a user clicked on an article, a user scrolled a page
until the end, or a user watched the whole video until the end. However, these ratings
will also be affected by user preference drift over time, as well as item popularity over
time. To avoid this, you can use exponential time decay to decrease ratings over time.

Rating-based methods are great for providing diverse recommendations, but require
a lot of existing ratings for a good performance. Hence they are often combined with
content- based recommendations to fight this cold-start problem. Therefore, popular
state-of-the-art recommendation models often combine both methods in a single
hybrid model, of which Matchbox Recommender is one such example.

Finally, you learned about the possibility of using reinforcement learning to optimize
the recommender's feedback function on the fly. Azure Personalizer is a service that
can be used to create hybrid online recommenders.

In the next chapter, we will look into deploying our trained models as batch or real-time
scoring systems directly from Azure Machine Learning.

After loading, preprocessing, and training models, in this section, the reader will now
learn how to deploy models for batch and online scoring. The reader will automate the
deployment to Azure Databricks and Azure Kubernetes Service using Azure Machine
Learning.

This section comprises the following chapters:

• Chapter 12, Deploying and operating machine learning models

• Chapter 13, MLOps—DevOps for machine learning

• Chapter 14, What’s next?

Section 4: Optimization
and Deployment of

Machine Learning
Models

In the previous chapter, we learned how to build efficient and scalable recommender
engines through feature engineering, NLP, and distributed algorithms. Collaborative
filtering is a popular approach for finding other users who rated similar products in a
similar way, whereas content-based recommendations use a feature engineering and
clustering approach. Therefore, you could combine all the methodologies that we have
covered up until now to build even better hybrid recommenders.

In this chapter, we will tackle the next step after training a recommender engine or any
machine learning (ML) model: we are going to register, deploy, and operate the model.
Hence, we aim to jump from here is my trained model, what now? to packaging the
model and execution runtime, registering both in a model registry, and deploying them
to an execution environment.

Deploying and
operating machine

learning models

12

350 | Deploying and operating machine learning models

First, we will take a look at an enterprise-grade model deployment of trained ML
models. You will learn what you need to define to make your model executable (for
example, as a web service in a Docker container) and under which circumstances
this can happen automatically (for example, for a scikit-learn pipeline). The two most
common deployment options—a real-time web service or a batch scoring pipeline—will
define the compute target and VM considerations.

In the second section, we will dive deeper into optimization and profiling techniques
and alternative deployment scenarios. One popular approach is to convert the ML
model into a portable and executable format using an inference-optimized scoring
framework or to embed the model into different environments and programming
languages. Open Neural Network eXchange (ONNX) is one of the executable formats
for acyclic computational graphs that can be ported to other languages and scored
efficiently using the ONNX runtime scoring framework. However, we will also take a
look at how to achieve even better performance by porting models to specific service
runtimes, such as Azure IoT Edge or dedicated hardware, such as Field Programmable
Gate Arrays (FPGAs).

In the last section, we will focus on how to monitor and operate your ML scoring
services at a scale. In order to optimize performance and cost, you need to keep track
not only of system-level metrics, but also of telemetry data and scoring results in order
to detect model or data drift. After this section, you will be able to confidently deploy,
tune, and optimize your scoring infrastructure in Azure.

In this chapter, you will cover the following topics:

• Deploying ML models in Azure

• Building a real-time scoring service

• Implementing a batch scoring pipeline

• Inference optimizations and alternative deployment targets

• Monitoring Azure Machine Learning deployments

Deploying ML models in Azure | 351

Deploying ML models in Azure
In previous chapters, we learned how to experiment, train, and optimize various ML
models to perform classification, regression, anomaly detection, image recognition,
text understanding, recommendations, and much more. This section continues on from
successfully performing those steps and having a successfully trained a model. Hence,
given a trained model, we want to now package and deploy these models with tools
in Azure.

Broadly speaking, there are two common approaches to deploying ML models,
namely deploying them as synchronous real-time web services and as asynchronous
batch-scoring services. Please note that the same model could be deployed as two
different services, serving different use cases. The deployment type depends heavily
on the batch size and response time of the scoring pattern of the model. Small batch
sizes with fast responses require a horizontally scalable real-time web service, whereas
large batch sizes and slow response times require horizontally and vertically scalable
batch services.

The deployment of a text understanding model (for example, an entity recognition
model or sentiment analysis) could include a real-time web service that evaluates
the model whenever a new comment is posted to an app, as well as a batch scorer in
another ML pipeline to extract relevant features from training data. With the former,
we want to serve each request as quickly as possible and so we will evaluate a small
batch size synchronously. With the latter, we are evaluating large amounts of data and
so we will evaluate a large batch size asynchronously. Our aim is that once the model is
packaged and registered, we can reuse it for either a task or use case.

Independent of the use case, the deployment process looks very similar. First, the
trained model needs to be registered in the model registry. Second, we need to specify
the deployment assets; for example, the environment, libraries, assets, scoring file,
compute target, and so on. These assets define exactly how the model is loaded,
initialized, and executed, and will be stored as Docker files in your private image
registry. Next, the specified compute target is created and the deployment image is
deployed there. Finally, once the service is deployed and running, you can send requests
to the service.

352 | Deploying and operating machine learning models

As you can imagine, the range of libraries, frameworks, and customized preprocessing
in the scoring file is pretty large. However, if you stick to the standard functionality
provided in scikit-learn or TensorFlow, you can also use no-code deployments. To do
so, you have to add a few additional parameters during the model registration, such as
the framework used, the version number, and the resource requirements.

Let's dive a bit deeper into these individual deployment steps.

Understanding the components of an ML model

When using Azure Machine Learning, there is a well-defined list of things you need to
specify in order to deploy and run an ML model. Once we have gone through this list,
it will be obvious that you need a runtime environment, a scoring file, and a compute
target in order to deploy your ML model as a service. However, these things are often
forgotten to be managed as integral parts of deployments.

First and most obviously, we need a model. A trained model—depending on the
framework, libraries, and algorithm used—consists of one or multiple files storing the
model parameters and structure. In scikit-learn, this could be a pickled estimator, in
Light Gradient Boosting Machine (LightGBM) this could be a serialized list of decision
trees, and in Keras, this could be a model definition and a binary blob storing the model
weights. We call this the model, and we store and version it in blob storage. At the
start-up time of your scoring service, the model will be loaded into the scoring runtime.

Hence, besides the model, we also need an execution runtime, which can be defined
via InferenceConfig. In Azure Machine Learning deployments, the execution runtime
will be stored as a single Docker file in your private Docker registry. The deployment
process will automatically build the Docker image for you and load it into the registry.
By default, the Azure Machine Learning workspace contains a private container registry,
which will be used for this case.

The base for the execution environment builds the base Docker image. In Azure
Machine Learning deployments, you can configure your own Docker base image. On
top of the base image, you can define a list of Python dependencies (through a Conda
environment) or pip dependencies. This should cover all the dependencies that your
model needs for scoring. The environment, including all the packages, will automatically
be set up on the Docker image and provided during runtime. On top of this, the
environment can be registered and versioned by Azure Machine Learning. This makes it
easy to track, reuse, and organize your deployment environments.

Deploying ML models in Azure | 353

Next, we need a so-called scoring file. This file typically loads the model and provides
a function to score the model when given some data as input. Depending on the type
of deployment, you need to provide a scoring file for either a (real-time) synchronous
scoring service or an asynchronous batch scoring service. The scoring files should be
tracked in your version control system and will be mounted in the Docker image.

To complete InferenceConfig, we are missing one last but important step: the Python
runtime used to run and execute your scoring file. Currently, Python and PySpark are
the only supported runtimes.

Finally, we need an execution target that defines the compute infrastructure that the
Docker image should be executed on. In Azure, this is called the compute target and
is defined through the deployment config. The compute target can be a managed
Kubernetes cluster, such as Azure Kubernetes Service (AKS), a container instance, such
as Azure Container Instances (ACI), or one of the many other Azure compute services.

Note

Please note that this list of cloud services is used for automated deployments
through Azure Machine Learning. Nothing stops you from running the Docker
image on your on-premise environment.

With Azure IoT Edge as an alternative compute target, you can also deploy directly
to edge devices in your own data center. We will take a closer look at this in the next
section. So, you need a trained and registered model, an inference config (execution
environment and scoring file), and a compute target to automatically deploy a model
through an authoring environment.

As it can get quite complicated having all these customization options, you can also use
a simplified approach to standard models and frameworks, such as scikit-learn, ONNX,
or TensorFlow models. This approach is called no-code deployment and requires only
the name and version of the used framework and a resource configuration; for example,
the number of CPUs and the amount of RAM to execute. These options replace the
inference configuration and the compute target and makes it very easy to deploy
standard models.

Now that we know the basics about deployments in Azure Machine Learning, we can
move on and look at an example of registering a model to prepare it for deployment.

354 | Deploying and operating machine learning models

Registering your models in a model registry

The first step in making your deployment pipeline should happen right after
training during the training process, namely registering the best model from each
run. Independent of whether your training script produces a single model, a model
ensemble, or a model combined by multiple files, you should always register the best
model from each run in your Azure Machine Learning workspace.

It literally takes you one additional line of code and less than a cent per month to store
a model with around 200 MB of size. The blob storage and model registry is directly
integrated with your Azure Machine Learning workspace. The added benefit is that you
won't ever lose the best model of a run and you get a convenient interface to load the
model from the Azure Machine Learning model registry:

1. Let's take a look at this one magic line:

run = Run.get_context()

train your model
clf = train_sklearn_mnist()

serialize the model and write it to disk from sklearn.externals import
joblib
joblib.dump(clf, 'outputs/sklearn_mnist_model.pkl')

model = run.register_model(model_name='sklearn_mnist', model_
path='outputs/sklearn_mnist_model.pkl')
print(model.name, model.id, model.version, sep='\t')

In the preceding code block, we first use the dump() function from sklearn
to serialize and store a trained classifier to disk. We then call the run.model_
register() function to upload a trained model to the model registry. This will
automatically track and version the model by name and connect it to the current
training run.

2. Once your model is stored in the model registry of your Azure Machine Learning
workspace, you can not only use it for deployments but also retrieve it by name
in any debugging, testing, or experimentation step. You can simply request the
latest model by name; for example, by running the following snippet on your local
machine:

from sklearn.externals import joblib from azureml.core.model import Model
model_path = Model.get_model_path('sklearn_mnist')
model = joblib.load(model_path)

Deploying ML models in Azure | 355

All we did in the preceding code is ran Model.get_model_path() to retrieve the
latest version of a model by name. We can also specify a version number to load
a specific model from the registry. This is one of the functionalities of the Azure
Machine Learning workspace that gets you hooked and makes you never want to
miss a model registry in the future. It gives you great flexibility and transparency
when working with model artifacts on different environments and during different
experiments.

Note

What if I told you that you could already deploy this model to a web service as a
blue-green deployment using one additional line of code, namely Model.deploy?
Well, I am pretty sure you would be surprised by how easy this is. Indeed, this is
possible using the no-code deployment mentioned in the previous section.

3. By defining a model, framework, and compute resource configuration, you can
deploy this model as a real-time web service in a single line of code. To do so,
we need to add this additional information to the model by extending the Model.
register arguments. Let's take a look at this in action:

from azureml.core import Model
from azureml.core.resource_configuration import ResourceConfiguration

register the model with no-code deployment configuration model = Model.
register(workspace=ws,
 model_name='sklearn_mnist',
 model_path='./sklearn_mnist_model.pkl',
 model_framework=Model.Framework.SCIKITLEARN,
 model_framework_version='0.19.1',
resource_configuration=ResourceConfiguration(
 cpu=1, memory_in_gb=0.5))
service_name = 'my-sklearn-service'
service = Model.deploy(ws, service_name, [model])

In the preceding code, we added the framework and framework version to the
model registry, as well as the resource configuration for this specific model. The
model itself is stored in a standard format in one of the supported frameworks
(scikit-learn, ONNX, or TensorFlow). This configuration gets added as metadata to
the model in the model registry.

356 | Deploying and operating machine learning models

4. Finally, we can call the Model.deploy() function to start the deployment process,
which will build the deployment runtime as a Docker image, register it in your
container registry, and start the image as a managed container instance, including
the scoring file, REST service abstraction, and telemetry collection. As you might
have spotted in the code, you can also deploy multiple models at once by passing
an array to the deployment function. To retrieve the URL of the scoring service
once it is finished, we run the following code:

service.wait_for_deployment(True)
print(service.state)
print("Scoring URL: " + service.scoring_uri)

If you want more granular control over the execution environment, endpoint
configuration, and compute target, you can use the advanced inference, deployment,
and service configs in order to tune your deployment. Let's now take a look at
customized deployments.

Customizing your deployment environment

In Azure Machine Learning, you use an execution environment to specify a base Docker
image, Python runtime, and all the dependent packages required to score your model.
Similar to models, environments can also be registered and versioned in Azure. So,
both the Docker artifacts and the metadata are stored in your workspace. This makes it
super simple to keep track of your environment changes, jump back and forth between
multiple versions of an environment, and share an environment for multiple projects:

1. We can define an environment either with the CLI and Conda file or comfortably
in an authoring environment using Python and the Azure Machine Learning SDK.
Let's take a look at how to define the Python environment using Conda:

from azureml.core.environment import Environment
from azureml.core.conda_dependencies import CondaDependencies
Create the environment myenv = Environment()
conda_dep = CondaDependencies()
Define the packages needed by the model and scripts
conda_dep.add_conda_package("tensorflow") conda_dep.add_conda_
package("numpy") conda_dep.add_conda_package("scikit-learn")
You must list azureml-defaults as a pip dependency conda_dep.add_pip_
package("azureml-defaults") conda_dep.add_pip_package("keras")
Adds dependencies to PythonSection of myenv myenv.python.conda_
dependencies=conda_dep

Deploying ML models in Azure | 357

As you can see in the preceding code block, we first initialize an Environment
instance and then add multiple packages to the conda dependency object. We
assign the conda environment by overriding the myenv.python.conda_dependencies
property with the conda dependency. Using the same approach, we can also
override Docker, Spark, and any additional Python settings using myenv.docker and
myenv.spark, respectively.

Note

The Azure Machine Learning SDK contains a detailed list of possible configuration
options, which you can find at https://docs.microsoft.com/python/api/azureml-
core/azureml.core.environment(class).

2. In the next step, you can now register the environment using a descriptive name.
This will add a new version of the current environment configuration to your
environment with the same name:

myenv.register(workspace=ws, name="PythonEnv")

3. You can also retrieve the environment from the registry using the following code.
This is also useful when you have registered a base environment, which can be
reused and extended for multiple experiments:

myenv = Environment.get(workspace=ws, name="PythonEnv")

4. As with the model registry, you can also load environments using a specified
version as an additional argument. Once you have configured an execution
environment, you can combine it with a scoring file to an InferenceConfig object.
The scoring file implements all functionalities to load the model from the registry
and evaluate it given some input data. The configuration can be defined as follows:

from azureml.core.model import InferenceConfig inference_config =
InferenceConfig(
entry_script="score.py", environment=myenv)

We can see, in the preceding example, that we simply specify a relative path to
the scoring script in the local authoring environment. Therefore, you first have to
create this scoring file—we will go through two examples of batch and real-time
scoring in the following sections.

5. To build an environment, we can simply trigger a build of the Docker image:

from azureml.core import Image build = myenv.build(workspace=ws)
build.wait_for_completion(show_output=True)

https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment(class)
https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment(class)

358 | Deploying and operating machine learning models

6. The environment will be packaged and registered as a Docker image in your
private container registry, containing the Docker base image and all specified
libraries. If you want to package the model and the scoring file as well, you can
package the model instead. This is done automatically when deploying the model
or can be forced by using the Model.package function. Let's load the model from
the previous section and package and register the image:

model_path = Model.get_model('sklearn_mnist')
package = Model.package(ws, [model], inference_config) package.wait_for_
creation(show_output=True)

The preceding code will build and package your deployment as a Docker image. In the
next section, we will find out how to choose the best compute target to execute your
ML deployment.

Choosing a deployment target in Azure

One of the great advantages of Azure Machine Learning is that they are tightly
integrated with many other Azure services. This is extremely helpful with deployments,
where we want to run Docker images of the ML service on a manage d service
within Azure. These compute targets can be configured and leveraged for automatic
deployment through Azure Machine Learning.

It's possible that you might not be an expert in Kubernetes when your job is to
productionize ML training and deployment pipelines. If that's the case, you might come
to enjoy the tight integration of management of Azure compute services in the Azure
Machine Learning SDK. Similar to creating execution environments, you can create
whole GPU clusters, managed Kubernetes clusters, or simple container instances from
within the authoring environment; for example, the Jupyter notebook orchestrating
your workflow.

We can follow a general recommendation for choosing a specific service, similar to
choosing a compute service for regular application deployments. So, we trade-off
simplicity, cost, scalability, flexibility, and operational expense between the compute
services that can easily start a web service from a Docker image.

Here is a recommendation of when to use which Azure compute service:

• For testing and experimentation, use ACI. It is super easy to set up and configure
and it is made to run container images.

• For deployments of scalable real-time web services with GPU support, use AKS.
This managed Kubernetes cluster is a lot more flexible and scalable but also a lot
harder to operate.

• For batch deployments, use AML Compute, the same compute cluster
environment we already used for training.

Building a real-time scoring service | 359

Depending on the type of deployment, you also need to modify your scoring file, which
is a part of your deployment of InferenceConfig. For quick experiments, you can also
deploy your service locally, using LocalWebservice as a deployment target. To do so, you
would have to run the following snippet on your local machine:

from azureml.core.webservice import LocalWebservice, Webservice

deployment_config = LocalWebservice.deploy_configuration(port=8890) service =
Model.deploy(ws, service_name, [model], inference_config,

deployment_config)

service.wait_for_deployment(show_output=True) print(service.state)

Building a real-time scoring service
For Azure Machine Learning, you can't really choose a specific deployment case to
match your use case. To implement a real-time scoring service, you need to pick
a highly scalable compute target (for example, AKS) and provide a scoring file that
receives data with each request and returns the prediction of the model synchronously:

1. To do so, you need to provide the init() and run() functions in the scoring file.
Let's take a look at a simple scoring file. In reality, this should be very simple, as we
have seen most of the code already:

import json
import numpy as np
 import os
from sklearn.externals import joblib
def init():
 global model
 model_path = Model.get_model_path('sklearn_mnist')
 model= joblib.load(model_path)
def run(data): try:
 result = model.predict(data)
 # You can return any JSON serializable data type return result.
tolist()
except Exception as e: error =
(e) return error

360 | Deploying and operating machine learning models

In the preceding snippet, you can see that we have provided init() and run()
functions. During the init() function, we load the model from the model registry
in the same way that we would load it on a local machine. We then deserialize the
model using the scikit-learn joblib library.

In the run() function, we are provided with a data object. The data object contains
all the parameters of the request that are sent to the service as a JSON object with
the data property. In the preceding case, we expect a client to send a request with
a body that contains an array of data that we can feed into the sklearn classifier.
Finally, we return a prediction, which will be automatically serialized into JSON
and returned to the caller.

2. Let's deploy the service, for testing purposes, to an ACI compute target. To do
so, we need to update the deployment configuration to contain the ACI resource
configuration:

from azureml.core.webservice import AciWebservice, Webservice deployment_
config = AciWebservice.deploy_configuration(
cpu_cores = 1, memory_gb = 1)
service = Model.deploy(ws, service_name, [model], inference_config,
deployment_config)
service.wait_for_deployment(show_output=True) print(service.state)

As you might have already thought, it would be great to validate the user's
request and provide the user with some information about how the service can
be used. To solve this, Azure Machine Learning provides a way to auto-generate
an OpenAPI specification that is available to the client through another endpoint.
This specification was previously called Swagger and provides an automated
standardized way to specify the service's data format.

Note

You can find more information about Azure Container Instance in the official
documentation https://docs.microsoft.com/azure/container-instances/container-
instances-overview.

3. You can enable automatic schema generation for pandas, NumPy, PySpark and
standard Python objects in your service through annotations in Python. First, you
need to include azureml-defaults>=1.0.45 and inference- schema[numpy-support]
as pip packages in your environment. Then, you can auto-generate the schema by
providing sample input and output data for your endpoint:

https://docs.microsoft.com/azure/container-instances/container-instances-overview
https://docs.microsoft.com/azure/container-instances/container-instances-overview

Building a real-time scoring service | 361

from inference_schema.schema_decorators import input_schema, output_schema
from inference_schema.parameter_types.numpy_parameter_type import
NumpyParameterType

input_sample = np.array([[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]]) output_sample =
np.array([3726.995])

@input_schema('data', NumpyParameterType(input_sample)) @output_
schema(NumpyParameterType(output_sample))
def run(data):
…

In the preceding example, we defined the schema through sample data and
annotations in the run() method. This is everything that is required to auto-
generate an API specification that your clients can use to validate endpoints and
arguments or to auto-generate clients. Swagger Codegen can now be used to
generate Java and C# clients for your new ML service.

4. Great, we now have input validation and can auto-generate clients to query the
service. Let's now deploy this service to an AKS cluster so we can take advantage
of the GPU acceleration and autoscaling:

from azureml.core.compute import AksCompute, ComputeTarget # Configure AKS
cluster with NVIDIA Tesla P40 GPU
prov_config = AksCompute.provisioning_configuration(
 vm_size="Standard_ND6s")
aks_name = 'aks-ml-prod' # Create the cluster
aks_target = ComputeTarget.create(workspace = ws,
 name = aks_name, provisioning_configuration = prov_config)
Wait for the create process to complete aks_target.wait_for_
completion(show_output = True)

In the preceding code, we created an AKS configuration and a new AKS cluster
as an Azure Machine Learning compute target from this configuration. All this
happens from completely within your authoring environment. If you already have
an AKS cluster up and running, you can simply use this cluster for Azure Machine
Learning.

Note

You can find more information about Azure Kubernetes Services in the official
documentation https://docs.microsoft.com/azure/aks/intro-kubernetes.

https://docs.microsoft.com/azure/aks/intro-kubernetes

362 | Deploying and operating machine learning models

5. To do so, you have to pass the resource group and cluster name to the AksCompute.
attach_configuration() method. Then, set the resource group that contains the
AKS cluster and the cluster name:

resource_group = 'my-rg' cluster_name = 'aks-ml-prod'
attach_config = AksCompute.attach_configuration(resource_group = resource_
group, cluster_name=cluster_name)
aks_target = ComputeTarget.attach(ws, cluster_name, attach_config)

6. Once we have a reference to the cluster, we can now deploy the ML model to the
cluster. This step is similar to the previous one:

deployment_config = AksWebservice.deploy_configuration(cpu_cores=1, memory_
gb=1)
service = Model.deploy(ws, service_name, [model], inference_config,
deployment_config, aks_target)
service.wait_for_deployment(show_output = True) print(service.state)
print(service.get_logs())

7. The cluster is up and running and the deployment is finished. Now, we can try a
test request to the service to make sure everything is working properly. By default,
Azure Machine Learning use key-based (primary and secondary) authentication.
Let's retrieve api_key and send some test data to the deployed service:

X_test = load_test_data()
import json
input_data = json.dumps({'data': [X_test]})
api_key = aks_service.get_keys()[0]
headers = {'Content-Type': 'application/json', 'Authorization': ('Bearer '
+ api_key)}
resp = requests.post(aks_service.scoring_uri, input_data, headers=headers)
print("POST to url", aks_service.scoring_uri) print("label:", y_
test[random_index]) print("prediction:", resp.text)

Implementing a batch scoring pipeline
Operating batch scoring services is very similar to the previously discussed online-
scoring approach—you provide an environment, compute target, and scoring file.
However, in your scoring file, you would rather pass a path to a blob storage location
with a new batch of data instead of the data itself. You can then use your scoring
function to process the data asynchronously and output the predictions to a different
storage location, back to the blob storage, or push the data asynchronously to the
calling service.

Implementing a batch scoring pipeline | 363

It is up to you how you implement your scoring file as it is simply a Python script
that you control. The only difference in the deployment process is that the batch-
scoring script will be deployed as a pipeline on an Azure Machine Learning cluster, and
triggered through a REST service. Therefore, it is important that your scoring script
can be configured through command-line parameters. Remember that the difference
with batch scoring is that we don't send the data to the scoring pipeline, but instead, we
send a path to the data and a path to write the output asynchronously.

Instead of deploying a batch scoring script as a service using Azure Machine Learning
deployments, we wrap the scoring script in a pipeline and trigger it from a REST
service. The pipeline can now be defined to use an Azure Machine Learning compute
cluster for execution:

1. Let's define a pipeline using a single step with a configurable batch size. In
both the pipeline configuration and the scoring file, you can take advantage of
parallelizing your work in the Azure Machine Learning cluster:

from azureml.core import Experiment
from azureml.pipeline.core import Pipeline
from azureml.pipeline.steps import PythonScriptStep

from azureml.pipeline.core.graph import PipelineParameter batch_size_param
= PipelineParameter(
 name="param_batch_size", default_value=20) inception_model_name =
"inception_v3.ckpt"
batch_score_step = PythonScriptStep(name="batch_scoring",
 script_name="batch_scoring.py", arguments=["--
 dataset_path", input_images,
 "--model_name",
 "inception", "--label_dir", label_dir,
 "--output_dir", output_dir,
 "--batch_size", batch_size_param],
 compute_target=compute_target, inputs=[input_images,
 label_dir], outputs=[output_dir],
 runconfig=amlcompute_run_config
)
pipeline = Pipeline(workspace=ws, steps=[batch_score_step]) pipeline_run =
Experiment(ws, 'batch_scoring').submit(pipeline,
pipeline_params={"param_batch_size": 20})

364 | Deploying and operating machine learning models

2. Using this pipeline configuration, we call our scoring script with the relevant
parameters. The pipeline is submitted as an experiment in Azure Machine
Learning, which gives us access to all the features in runs and experiments in
Azure. One feature would be that we can simply download the output from the
experiment when it has finished running:

pipeline_run.wait_for_completion(show_output=True) step_run =
list(pipeline_run.get_children())[0] step_run.download_file("./outputs/
result-labels.txt")

3. If the batch scoring file produces a nice CSV output containing names and
predictions, we can now display the results using the following pandas
functionality:

import pandas as pd
df = pd.read_csv("result-labels.txt", delimiter=":", header=None)
df.columns = ["Filename", "Prediction"]
df.head()

4. Let's go ahead and publish the pipeline as a REST service:

published_pipeline = pipeline_run.publish_pipeline(name="Inception_
v3_scoring", description="Batch scoring using Inception v3 model",
version="1.0")

published_id = published_pipeline.id rest_endpoint = published_pipeline.
endpoint

5. To run the published pipeline as a service through HTTP, we now need to use
token-based authentication:

from azureml.core.authentication import AzureCliAuthentication import
requests
cli_auth = AzureCliAuthentication()
aad_token = cli_auth.get_authentication_header()

6. Having retrieved the authentication token, we can now run the published pipeline:

specify batch size when running the pipeline
response = requests.post(rest_endpoint, headers=aad_token,
 json={"ExperimentName": "batch_scoring",
 "ParameterAssignments":
{"param_batch_size": 50}}) run_id = response.json()["Id"]

Inference optimizations and alternative deployment targets | 365

Running a batch scoring pipeline on Azure Machine Learning is a bit different to
running a synchronous scoring service. While the real-time scoring service uses Azure
Machine Learning deployments and AKS or ACI as popular compute targets, batch
scoring models are usually deployed as published pipelines on top of AML Compute.
The benefit of a published pipeline is that it can be used as a REST service, which can
trigger and parameterize the pipeline.

Inference optimizations and alternative deployment targets
Using Azure Machine Learning deployments, it's quite easy to get your first
experimental service up and running. Through the versioning and abstracting of models
and environments, it is painless to deploy the same model and environment to different
compute targets. However, it's not that easy to know beforehand how many resources
your model will consume and how you can optimize your model or deployment for a
higher inferencing throughput.

Profiling models for optimal resource configuration

Azure Machine Learning provides a handy tool to help you evaluate the required
resources for your ML model deployment through model profiling. This will help you
estimate the number of CPUs and the amount of memory required to operate your
scoring service at a specific throughput.

Let's take a look at the model profile of the model that we trained during the real-time
scoring example:

1. First, you need to define test_data in the same format as the JSON request for
your ML service—so, have test_data embedded in a JSON object under the data
root property. Please note that if you defined a different format in your scoring
file, then you need to use your own custom format:

import json
test_data = json.dumps({'data': [[1,2,3,4,5,6,7,8,9,10]
]})

2. Then, you can use the Model.profile() method to profile a model and evaluate the
CPU and memory consumption of the service. This will start up your model, fire
requests with test_data provided to it, and measure the resource utilization at the
same time:

profile = Model.profile(ws, service_name, [model], inference_config, test_
data)
profile.wait_for_profiling(True) profiling_results = profile.get_results()
print(profiling_results)

366 | Deploying and operating machine learning models

The output contains a list of resources, plus a recommended value for the profiled
model:

{'cpu': 1.0, 'memoryInGB': 0.5}

It is good to run the model profiling tool before doing a production deployment, and
this will help you set meaningful default values for your resource configuration.

To further optimize and decide whether you need to scale up or down, vertically or
horizontally, you need to measure, track, and observe various other metrics. We will
discuss more about monitoring and scaling in the last section of this chapter.

Portable scoring through the ONNX runtime

Some use cases require you to embed a trained ML model in an application that was
written in a different language from Python. In most cases, you can still train your
model with Python, export it to a common format, and then score it in a different
language using the shared format. In some cases, if you use a specific runtime
optimized for scoring, you can achieve a nice performance boost.

The ONNX format is a standard that originally exports neural network model structures
and weights to an exchangeable format so that they can be loaded and inferred in
other frameworks and languages. ONNX received a lot of traction and support from
major companies (such as Microsoft, Facebook, AWS, ARM, Intel, and many more) and
transitioned to a format for exchanging all kinds of ML models.

Most of today's ML frameworks, such as sklearn, TensorFlow, PyTorch, and so on, allow
you to export trained models in an ONNX format. To run a model in an ONNX format,
you can either choose an ML framework that can parse ONNX models or use an ONNX
inferencing runtime. Microsoft developed the C++-based ONNX runtime, which takes
advantage of many hardware acceleration features, such as GPUs, TensorRT, DNNL,
nGraph, CUDA, MLAS, and so on, to provide great scoring performance. This advantage
is especially significant when running inference in the cloud on Azure VMs, where we
can't always control the underlying hardware features.

Luckily, Azure provides the ONNX runtime as an option in the Azure Machine Learning
deployments and so provides us with optimized binaries for the underlying hardware.
We often see performance gains using the ONNX runtime score engines in the range of
two-times greater than for CPU-based models.

Inference optimizations and alternative deployment targets | 367

Let's see it in action:

1. The first step is to convert your current trained model to an ONNX model. Here's a
snippet of how to export a TensorFlow frozen graph into an ONNX model:

from onnx_tf.frontend import tensorflow_graph_to_onnx_model with tf.gfile.
GFile("frozen_graph.pb", "rb") as f:
 graph_def = tf.GraphDef()
 graph_def.ParseFromString(f.read())
 onnx_model = tensorflow_graph_to_onnx_model(graph_def, "fc2/add",
opset=6)
file = open("mnist.onnx", "wb") file.write(onnx_model.SerializeToString())
file.close()

2. Next, we need to register the ONNX model in the Azure Machine Learning model
registry. This step is similar to the one used when registering sklearn or any other
model, as models are simply stored as binary files in blob storage, with meta-
information in the registry. We also add information about the framework so we
can take advantage of no-code deployments:

from azureml.core import Model
from azureml.core.resource_configuration import ResourceConfiguration
register the model with no-code deployment configuration model = Model.
register(workspace=ws,
 model_name='onnx_mnist',
 model_path='./mnist.onnx',
 model_framework=model_framework=Model.Framework.ONNX,
 model_framework_version='1.3',
 resource_configuration=ResourceConfiguration(cpu=1,
memory_in_gb=0.5))

3. Once the model is registered, there is nothing left to do other than to kick off
auto-deployment. Let's deploy the model and retrieve the scoring URL:

service_name = 'my-onnx-service'
service = Model.deploy(ws, service_name, [model])
service.wait_for_deployment(True) print(service.state)
print("Scoring URL: " + service.scoring_uri)

In the preceding code, we took advantage of the no-code auto-deployment using
the resource configuration and framework definition stored in the model registry.
If you deploy the ONNX model using your own InferenceConfig, you need to
also change the scoring file to use ONNX instead of the previous framework and
include the onnxruntime Python package.

368 | Deploying and operating machine learning models

Fast inference using FPGAs in Azure

In the previous section, we exported a model to ONNX to take advantage of an
inference- optimized and hardware-accelerated runtime to improve the scoring
performance. In this section, we will take this approach one step further to deploy on
even faster inferencing hardware—FPGAs. Azure offers FPGAs in the VMs of the PBS
family, with pre-defined deep learning architectures to accelerate inference.

The general approach is very similar to ONNX—you take a trained model and convert
it to a specific format that can be executed on the FPGAs. In this case, your model has
to be either ResNet, DenseNet, VGG, or SSD-VGG and must be written in TensorFlow
in order to be converted. In this case, we will use quantized 16-bit float model weights
converted to ONNX models, which will be run on the FPGAs. For these models, FPGAs
give you the best inference performance in the cloud.

Running models on FPGAs in Azure requires a few extra steps compared to the previous
example. These are the steps:

1. Pick a supported model featurizer.

2. Train the supported model with a custom classifier.

3. Quantize the model featurizer's weights to 16-bit precision.

4. Convert the model to an ONNX format.

5. Register the model.

6. Create a compute target with PBS nodes.

7. Deploy the model.

Note

As the code is cluttered and hard to interpret, we will skip the code examples in
this section. However, you can find detailed examples about FPGA model training,
conversion, and deployments on Azure's GitHub repository at https://github.com/
Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/deployment/
accelerated-models.

In order to run a model on the FPGAs, you need to pick a supported model from the
azureml.accel.models package. In the documentation, this part is referred to as a
featurizer and only builds the feature extraction part of your model. You can attach any
classification or regression head (or both) on top using TensorFlow or Keras. Only the
feature extractor part of the model will later run on the FPGAs—similar to running only
certain operations on GPUs.

https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/deployment/accelerated-models
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/deployment/accelerated-models
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/deployment/accelerated-models

Inference optimizations and alternative deployment targets | 369

In the next step, you can train the model, consisting of a pre-defined feature extractor
and a custom classification head, using your own data and weights or by fine-tuning,
for example, provided ImageNet weights. This should happen with 32-bit precision as
convergence will be faster during training.

Once the training is finished, you need to quantize the feature extractor's weights into
half- precision floats, using the quantized models provided in azureml.accel.models.
This will make your model a lot smaller and optimized for FPGA-based inference.

Next, you convert the whole model into an ONNX model, using AccelOnnxConverter from
the same Azure package. An AccelContainerImage class helps you define InferenceConfig
for the FPGA-based compute targets.

Finally, you can register your model using the Azure Machine Learning model registry.
In addition, you can create an AKS cluster using the Standard_PB6s nodes. Once the
cluster is up and running, you use your Model.deploy command.

The workflow to deploy a model to accelerate FPGA-based compute targets is a bit
different to simply deploying ONNX models, as you have to consider the limited
supported selection of models right from the beginning. Another difference is that
while you choose a pre-defined supported model for FPGA deployment, you only get
the feature extractor part of the model. This means you have to attach an additional
classification or regression head—a step that is not immediately obvious. Once you
understand this, it will make more sense that you only quantize the feature extractor to
half-precision floats after training.

While this process seems a bit difficult and customized, the performance gain,
especially when dealing with predictions on image data, is huge (1.8ms). Therefore, you
should take advantage of this optimization only if you are ready to modify your training
process to build on the FPGA-supported models and quantized representation.

Alternative deployment targets

Relying on Azure Machine Learning either for experimentation, performing end-to-
end training, or simply for registering your trained models and environments brings
you a ton of value. Currently, we have mostly covered two common cloud deployment
patterns; namely, a real-time scoring web service through automated deployments
and batch scoring through a deployed pipeline. While these two use cases are quite
different in requirement and deployment types, they show what is possible once you
have a trained model and packaged environment stored in Azure Machine Learning. In
this section, we will discuss some of the alternative deployment targets that you might
not even think of immediately.

370 | Deploying and operating machine learning models

In many scenarios, abstracting your batch scoring pipeline from the actual data
processing pipeline to separate concerns and responsibilities makes a lot of sense.
However, sometimes your scoring should happen directly during the data processing
or querying time and in the same system. Once your ML model is registered and
versioned with Azure Machine Learning, you can pull out a specific version of the model
anywhere using the Azure Machine Learning SDK, either in Python, C#, the command
line, or any other language that can make a call to a REST service.

This makes it possible to pull trained and converted ONNX models from a desktop
application, either during build or at runtime. You can load models while running
Spark—for example, on Azure Databricks—when you don't want to move TBs of data to a
separate scoring service. You can integrate this also with managed services supporting
Python extensions, such as Azure Data Explorer.

Azure Data Explorer is an exciting managed service for storing and querying large
amounts of telemetry data efficiently. It is used internally at Azure to power log
analytics, app insights, and time-series insights. It has a powerful Python runtime,
with many popular packages available at runtime, and so provides a perfect service for
performing anomaly detection or time-series analysis, based on your custom models.

One of the most interesting integrations from an enterprise perspective is the Azure
Machine Learning integration with Power BI. To enable your real-time scoring service
for Power BI, your service must parse pandas DataFrames instead of NumPy arrays. By
doing this and allowing the Power BI service to access your Azure Machine Learning
workspace, you can now apply your ML model deployments on columns in Power BI in
the query view. Think for a second how powerful this concept of rolling out ML models
to be used by analysts in their BI tools is. The Figure 12.1 shows the query view in the
Power BI service, which allows you to use your trained models for predictions on your
BI data:

Figure 12.1: The query view in the Power BI

Monitoring Azure Machine Learning deployments | 371

Another interesting deployment scenario is the integration of Azure Machine Learning
with Azure IoT Edge. This integration will allow you to simply register a deployment
service for IoT Edge, which will pull the service image and execute it on its local
runtime. An interesting aspect of this scenario is that Azure IoT Edge devices are usually
used in your own premises and so are not part of the cloud data center.

Note

Please note that you still get many benefits, such as managed environments and
deployments, while the execution target sits in your own data center or data box.

We won't go into any more detail because many of these alternative deployment options
are still in preview and could rapidly change or evolve from the current situation.
However, it is worth noting that when using Azure Machine Learning for model
deployments, you can take advantage of all the Azure ecosystem and expect to see
integration with many of our favorite services.

Monitoring Azure Machine Learning deployments
You have successfully registered a trained model, an environment, a scoring file, and
an inference configuration in the previous section. You have optimized your model for
scoring and deployed it to a managed Kubernetes cluster. You auto-generated client
SDKs for your ML services. So, can you finally lean back and enjoy the success of your
hard work? Well, not yet! First, we need to make sure that we have all our monitoring in
place so that you can observe and react to anything happening to your deployment.

First, the good things: with Azure Machine Learning deployments and managed
compute targets, you will get many things included out of the box with either Azure,
Azure Machine Learning, or your service used as a compute target. Tools such as
the Azure dashboard, Azure Monitor, and Azure Log Analytics make it really easy to
centralize log and debug information. Once your data is available through Log Analytics,
it can be queried, analyzed, visualized, alerted, and/or used for automation using Azure
Automation. A great deployment and operations process should utilize these tools
integrated with Azure and the Azure services.

The first thing that should come to mind when operating any application is measuring
software and hardware metrics. It's essential to know the memory consumption, CPU
usage, I/O latency, and network bandwidth of your application. Particularly for an
ML service, you should always have an eye on performance bottlenecks and resource
utilization for cost optimization. For large GPU-accelerated deep neural networks, it
is essential to know your system in order to scale efficiently. These metrics allow you
to scale your infrastructure vertically, and so move to bigger or smaller nodes when
needed.

372 | Deploying and operating machine learning models

Another monitoring target for general application deployments should be your users'
telemetry data—how they are using your service, how often they use it, and which parts
of the service they use. This will help you to scale horizontally and add more nodes or
remove nodes when needed.

The last important portion to measure from your scoring service—if possible—is the
user input over time and the scoring results. For optimal prediction performance, it is
essential to understand what type of data users are sending to your service and how
similar this data is to the training data. It's relatively certain that your model will require
retraining at some point and monitoring the input data will help you to define a time
that this is required; for example, through a data drift metric.

Let's take a look at how we can monitor the Azure Machine Learning deployments and
keep track of all these metrics in Azure.

Collecting logs and infrastructure metrics

If you are new to cloud services, or Azure specifically, log and metric collection can
be a bit overwhelming at first. Logs and metrics are generated in different layers in
your application and can be either infrastructure- or application-based and collected
automatically or manually. Then, there are diagnostic metrics that are automatic but sit
behind a toggle and so must be activated actively. In this section, we briefly discuss how
to collect this metric for the three main managed compute targets in Azure Machine
Learning—ACI, AKS, and AML Compute.

By default, you will get access to infrastructure metrics and logs through Azure
Monitor. It will automatically collect Azure resources and guest OS metrics and logs and
provide metrics and query interfaces for logs based on Log Analytics. Azure Monitor
should be used to track resource utilization—for example, CPU, RAM, disk space, disk
I/O, network bandwidth, and so on—which then can be pinned to dashboards or alerted
on. You can even set up automatic autoscaling based on these metrics.

Metrics are mostly collected as distributions over time and reported back at certain
time intervals. So, instead of seeing thousands of values per second, you are asked to
choose an aggregate for each metric; for example, the average of each interval. For
most monitoring cases, I would recommend you either look at the 95% percentile (or
maximum aggregation, for metrics where lower is better) to avoid smoothing any spikes
during the aggregation process. In AKS, you are provided with four different views of
your metrics through Azure Monitor—Cluster, Nodes, Controllers, and Containers.

More detailed resource, guest, and virtualization host logs of your Azure Machine
Learning deployment can be accessed by enabling diagnostic settings and providing a
separate Log Analytics instance. This will automatically load the log data into your Log
Analytics workspace where you can efficiently query all your logs, analyze them, and
create visualization and/or alerts.

Monitoring Azure Machine Learning deployments | 373

I strongly recommend you take advantage of the diagnostic settings as they give you
loads of insight into your Azure infrastructure. This is especially helpful when you need
to debug problems in your ML service; for example, failing containers, non-starting
services, crashes, application freezes, slow response times, and so on. Another great
use case for Log Analytics is to collect, store, and analyze your application log. In AKS,
you can send the Kubernetes master node logs, kubelet logs, API server logs, and much
more, to Log Analytics.

One metric that is very important to track for ML training clusters and deployments,
but is unfortunately not tracked automatically, is the GPU resource utilization. Due
to this problem, GPU resource utilization has to be monitored and collected at the
application level.

The most elegant way to solve this for AKS deployments is to run a GPU logger service
as a sidecar with your application, which collects resource stats and sends them to
Application Insights (App Insights), a service that collects application metrics. Both
App Insights and Log Analytics use the same data storage technology under the hood:
Azure Data Explorer. However, default integrations for App Insights provide mainly
application metrics, such as access logs, while Log Analytics provides system logs.

In AML Compute, need to start a separate monitoring thread from your application
code to monitor GPU utilization. Then, for Nvidia GPUs, we use a wrapper around the
nvidia- smi monitoring utility; for example, the nvidia-ml-py3 Python package. To send
data to App Insights, we simply use the Azure SDK for App Insights. Here is a tiny code
example showing you how to achieve this:

import nvidia_smi

nvidia_smi.nvmlInit()

get handle for card id 0

handle = nvidia_smi.nvmlDeviceGetHandleByIndex(0)

res = nvidia_smi.nvmlDeviceGetUtilizationRates(handle) from
applicationinsights import TelemetryClient

tc = TelemetryClient("appinsights_key")

tc.track_metric("gpu", res.gpu) tc.track_metric("gpu-gpu-mem", res.memory)

In the preceding code, we first used the nvidia-ml-py3 wrapper on top of nvidia-
smi to return a handle to the current GPU. Please note that when you have multiple
GPUs, you can also iterate over them and report multiple metrics. Then, we use the
TelemetryClient API from App Insights to report these metrics back to a central place,
where we can then visualize, analyze, and alert these values.

374 | Deploying and operating machine learning models

Tracking telemetry and application metrics

We briefly touched on Azure App Insights in the previous section. It is a really amazing
service for automatically collecting application metrics from your services; for example,
Azure Machine Learning deployments. It also provides an SDK to collect any user-
defined application metric that you want to track.

To automatically track user metrics, we need to deploy the model using Azure Machine
Learning deployments to AKS or ACI. This will not only collect the web service metadata
but also the model's predictions. To do so, you need to enable App Insights' diagnostics,
as well as data model collection, or enable App Insights via the Python API:

from azureml.core.webservice import Webservice aks_service= Webservice(ws,
"aks-deployment") aks_service.update(enable_app_insights=True)

In the preceding snippet, we can activate App Insights' metrics directly from the Python
authoring environment. While this is a simple argument in the service class, it gives you
an incredible insight into the deployment.

Two important metrics to measure are data drift coefficients for both training data and
model predictions. By automatically tracking the user input and the model predictions,
you can compare a statistical correlation between the training data and the user input
per feature dimension, as well as the training labels with the model prediction. This
correlation should be tracked, monitored, and alerted daily to understand when your
deployed model differs too much from the training data and so needs to be retrained.

Summary
In this chapter, you learned how to take a trained model and deploy it as a managed
service in Azure through a few simple lines of code. To do so, we learned that Azure
Machine Learning deployments are structured in multiple components: a binary model
registered, versioned, and stored in blob storage; a deployment environment based on
Docker and Conda registered, versioned, and stored in a container registry; a scoring
file, which defines the inference config and a compute target and resources defining
the deployment config.

While this gives you great flexibility to configure every detail of your environment and
deployment targets, you can also use no-code deployments for specific frameworks
(such as scikit-learn, TensorFlow, and ONNX). This will take your model and deploy
it using an out-of-the-box default environment and deployment target. When
specifying a custom compute target, you need to trade off scalability, flexibility, cost,
and operational expense for each supported service. It's recommended you deploy
prediction service experiments to ACI and production deployments to AKS. When you
need to score hundreds of data points at once, you could also deploy an ML pipeline on
AML Compute.

Summary | 375

To improve the scoring performance, you can deploy your model to dedicated
inferencing hardware on top of FPGAs. You need to deploy your nodes from the PBS
family of Azure VMs and choose one of a few models that are currently supported
(ResNet, DenseNet, VGG, and SSD-VGG based on TensorFlow). This will result in a 2x
performance boost in scoring ML models compared to GPUs.

We also learned about another optimization technique that helps you port your models
to other languages at the same time. The ONNX format provides a unified format to
store ML pipelines that can be changed over multiple runtimes—for example, ONNX
models can be run in PyTorch, TensorFlow, or MXNet. Microsoft provides its own
standalone ONNX runtime that is written in C and optimized for scoring.

In the last section, we learned about monitoring and operating your models using
Azure Machine Learning deployments. While it is fairly obvious to monitor metrics and
telemetry, we also saw how to measure data drift of your service by collecting user
input and model output over time. Detecting data drift is an important metric that
allows you to know when a model needs to be retrained.

In the next chapter, we will automate the complete end-to-end ML process—
everything that we learned so far—using Azure DevOps. This methodology, also
referred to as MLOps and AIOps, will help you combine relevant ideas from DevOps
and modern software development with ML and data engineering. The output will be
a fully automated pipeline with automatic, auto-scaling blue-green deployments and
automatic retraining.

In the previous chapter, we covered machine learning (ML) deployments in Azure
using automated Azure Machine Learning deployments for real-time scoring services,
Azure Pipelines for batch prediction services, and ONNX, FPGAs, and Azure IoT Edge
for alternative deployment targets. If you have read all of the chapters preceding this
one, you will have seen and implemented a complete end-to-end ML pipeline with
data cleansing, preprocessing, labeling, experimentation, model development, training,
optimization, and deployment.

Congratulations on making it this far! You now possess all the skills needed to connect
the bits and pieces together for MLOps and to create DevOps pipelines for your
ML models.

MLOps—DevOps for
machine learning

13

378 | MLOps—DevOps for machine learning

Throughout this book, we have emphasized how every step of the ML training and
deployment process can be scripted through Bash, PowerShell, the Python SDK, or
any other library wrapping the Azure Machine Learning REST service. This is true
for creating environments, starting and scaling clusters, submitting experiments,
performing parameter optimization, and deploying fully fledged scoring services on
Kubernetes. In this chapter, we will reuse all of these concepts to build a version-
controlled, reproducible, automated ML training and deployment process as a
continuous integration/continuous deployment (CI/CD) pipeline in Azure.

First, we will take a look at how to ensure reproducible builds, environments, and
deployments with Azure DevOps. We will look at this from a code and artifact
perspective and decide what to do with both to ensure that the same model is trained
each time a build is started. We will take this very approach and map it to register and
version data. This will allow you to audit your training and know what data was used to
train a specific model at all times.

Next, we will take a look at validating your code, and code quality, automatically. You are
probably already familiar with some testing techniques for application development.

However, we will take these techniques to the next level to test the quality of datasets
and the responses of ML deployments.

In this chapter, we will cover the following topics:

• Ensuring reproducible builds and deployments

• Validating your code, data, and models

We'll begin by exploring a number of methods to ensure the reproducibility of your
builds and deployments.

Ensuring reproducible builds and deployments
DevOps has many different meanings, but it is usually oriented toward enabling rapid
and high-quality deployments when source code changes. One way of achieving
high-quality operational code is to guarantee reproducible and predictable builds,
which is also crucial for creating reproducible ML pipelines. While it seems obvious
for application development that the compiled binary will look and behave in a similar
manner, with only a few minor configuration changes, the same is not true for the
development of ML pipelines.

Ensuring reproducible builds and deployments | 379

There are four main problems that ML engineers and data scientists face that make
building reproducible deployments very difficult:

• The development process is often performed in notebooks, so it is not
always linear.

• There are mismatching library versions and drivers.

• Source data can be changed or modified.

• Non-deterministic optimization techniques can lead to completely
different outputs.

We have discussed these issues in the first few chapters of this book, and you have
probably seen them in a lot of places when implementing ML models and data pipelines,
particularly in interactive notebooks such as Jupyter, JupyterLab, Databricks, Zeppelin,
and Azure notebooks. While interactive notebooks have the great advantage of
executing cells to validate blocks of models iteratively, they also often encourage a user
to run cells in a non-linear order. The very benefit of using a notebook environment
becomes a pain when trying to productionize or automate a pipeline.

The second issue that is quite common in ML is ensuring that the correct drivers,
libraries, and runtimes are installed. While it is easy to run a linear regression model
based on scikit-learn in either Python 2 or 3, it makes a huge difference if those
CUDA, cuDNN, libgpu, OpenMPI, Horovod, and PyTorch versions match and work in
deployment as they did during development. Using Docker helps a lot in providing
reproducible environments, but it's not straightforward when using it throughout the
experimentation, training, optimization, and deployment processes.

Another big problem faced by many data scientists is that often, data changes over time.
Either a new batch of data is added during development, or data is cleaned, written
back to the disk, and reused as input for a new experiment. Data, due to its variability in
format, scale, and quality, can be one of the biggest issues when producing reproducible
models. Thinking about data versions and checkpoints similarly to how you would think
about version-controlling source code is absolutely essential, not only for reproducible
builds but also for auditing purposes.

The last problem that makes ML deployments very difficult is that they often contain
an optimization step, as discussed in Chapter 9, Hyperparameter tuning and Automated
Machine Learning. While this optimization, either for model selection, training,
hyperparameter tuning, or stacking, is essential to the ML life cycle, it adds a layer of
uncertainty to your automatic deployment if non-deterministic processes are used.
Let's find out how we can fight these problems step by step.

380 | MLOps—DevOps for machine learning

Azure DevOps gives you a great set of functionalities to automate everything in your
CI/CD process. In general, it lets you run pieces of functionality, called tasks, grouped
together in pipelines on a compute infrastructure that you define. You can either run
pipelines that are triggered automatically through a new commit in your version control
system or manually trigger them through a button; for example, for semi-automated
deployments. Build pipelines run statelessly and don't output anything, whereas
release pipelines are stateful pipelines that are supposed to generate artifacts and use
them for releases and deployments. The reproducibility of your ML pipelines ensures
that all the stages that you go through for training your model, such as data prep,
hyperparameter tuning, and model evaluation, can, and do, flow into each other without
you having to reinvent the wheel.

Version-controlling your code

This is not optional; using version control for your source code, data transformations,
experiments, training scripts, and so on is essential. While many people and
organizations might not be OK with storing code in private GitHub, GitLab, or Bitbucket
repositories, you can also create your private repository in Azure DevOps. Creating a
new project in Azure DevOps automatically creates a new Git repository for you.

Using version control for your code at all is more important than which version control
system you use. Git works well, but so does Mercurial, and some people work with
Subversion (SVN). However, making yourself familiar with the basic workflows of the
version control system that you choose is essential. In Git, you should be able to create
branches and commits, submit pull requests (PRs), comment on and review requests,
and merge and squash changes.

This is also where the power lies: documenting changes. Changing your code should
trigger an automatic pipeline that validates and tests your changes and, when
successful and merged, trains your model and rolls it out to production. Your commit
and PR history will not only become a great source of documenting changes, but is also
useful when it comes to triggering, running, and documenting whether these changes
are ready for production.

In order to work effectively with version control, it is essential that you try to
move business logic out of your interactive notebooks as soon as possible. I would
recommend using a hybrid approach, where you first test your code experiments in a
notebook and gradually move the code to a module that is imported at the beginning
of each file. Using auto-reload plugins, you can make sure that these modules get
automatically reloaded whenever you change them, without needing to restart
your kernel.

Ensuring reproducible builds and deployments | 381

Moving code from notebooks to modules will not only make your code more reusable
in your own experiments—there will be no need to copy utility functions from notebook
to notebook—but it will also make your commit log much more readable. When multiple
people change a few lines of code in a massive JSON file (that's how your notebook
environment stores the code and output of every cell), then the changes made to the
file will be almost impossible to review and merge. However, if those changes are made
in a module—a separate file containing only executable code—then these changes will be
a lot easier to read, review, reason about, and merge.

Figure 13.1 shows the Azure DevOps repository view, which is a good starting point
for all subsequent MLOps tasks. Please note that your source code doesn't have to be
stored in Azure DevOps Git repositories; you can use many other popular code hosting
services, such as GitHub, Bitbucket, or SVN, or you can even use your own custom Git
server:

Figure 13.1: The Azure DevOps repository view

So, if you haven't already, brush up on your Git skills, create a (private) repository, and
get started with version control; we will need it in the following sections.

Registering snapshots of your data

Building a versioning process around your training data is probably the hardest step
that we will cover in this section. It is fairly obvious to check any data files that are small
and readable (non-binary and non-compressed) in the version control system. However,
together with your source code, it is usually the case for most data sources to be
binary, compressed, or not small enough to store in Git. This is what makes this step so
complicated and is the reason why many ML engineers prefer to skip it rather than do it
properly from the beginning.

382 | MLOps—DevOps for machine learning

So then, how is it done properly? You can think of it like this: whenever you execute
the same code, it should always pull and use the same data predictably—regardless of
whether you execute the script today or in a year from now. A second constraint is that
when you change your data or the input source of the training data, then you want to
make sure the change is reflected in the version control system. Sounds simple, right?

In general, we need to differentiate operational data (transactional, stateful, or
mutable) from historical data (analytical, partitioned, or immutable). When working
with operational data—for example, an operational database storing customer data—we
need to always create snapshots before pulling in the data for training. When using
efficient data formats, such as Parquet or Arrow, and scalable storage systems, such as
Azure Blob storage, this should never be an issue—even if you have multiple TBs of data.
Snapshots could, and should, be incremental, such that only new data is added in new
partitions.

The other obvious example is that your data might change when you change sensors,
or you could see the effects of seasons on your data, which will showcase data drift on
the datasets. Suddenly, your model does not perform as expected, and performance
degrades. Therefore, once you have set up the pipelines as mentioned in this chapter,
there is the possibility to retrain the model without having to change all the steps
involved. This is because, as a result of using pipelines, data preprocessing should
become a process that is automated and reproducible.

When dealing with historical, immutable data, we usually don't need to create extra
snapshots if the data is partitioned—that is, organized in directories. This will make it
easier to modify your input data source to point to a specific range of partitions instead
of pointing to a set of files directly.

Once you have the data in place, it is strongly recommended that you use Azure
Machine Learning to create snapshots of your datasets before you get started. This
will create and track a reference to the original data, and provide you with a pandas or
PySpark interface to read the data. This data will define the input of your pipeline.

Whenever you process data, it is helpful to parameterize your pipeline using a
predictable placeholder. Looking up the current date in your program to determine
which folder to write to is not very useful, as you will most likely have to execute the
pipeline with the same parameters on multiple days when you run into errors. You
should always parameterize pipelines from the calling script, such that you can always
rerun failed pipelines and it will create the same outputs every time.

Ensuring reproducible builds and deployments | 383

When using Azure DevOps pipelines to wrap your data preprocessing, cleaning,
and feature engineering steps, your pipelines should always create—and eventually
overwrite—the same output folder when called with the same arguments. This ensures
that your pipeline stays reproducible, even when executed multiple days in a row for
the same input data.

So, make sure that your input data is registered and versioned and that your output
data is registered and parameterized. This takes a bit of configuring to set up properly,
but it is worth it for the whole project life cycle.

Tracking your model metadata and artifacts

Moving your code to modules, checking it into version control, and versioning your
data will help to create reproducible models. If you are building an ML model for an
enterprise, or you are building a model for your start-up, knowing which model and
which version is deployed and used in your service is essential. This is relevant for
auditing, debugging, or resolving customer inquiries regarding service predictions.

We have covered this in previous chapters, and hopefully you are convinced by now
that it's not only beneficial but absolutely essential to track and version your models in
a model registry. The model consists of artifacts, files that are generated while training
(for example, the model architecture and model weights), and metadata (for example,
the dataset snapshot and version used for training, validation, and testing, the commit
hash to know which code has produced the model, and the experiment and run IDs
to know which other parameter configurations were tested before the model was
selected).

Another important consideration is to specify and version-control the seed for your
random number generators. During most training and optimization steps, algorithms
will use pseudo-random numbers based on a random seed to shuffle data and choices.
So, in order to produce the same model after running your code multiple times, you
need to ensure that you set a fixed random number seed for every operation that is
built on randomized behaviors.

384 | MLOps—DevOps for machine learning

The good thing about tracking your model artifacts in a model registry—for example,
in Azure Machine Learning—is that you automatically trigger release pipelines in Azure
DevOps when the artifacts change. Figure 13.2 shows an Azure DevOps release pipeline,
where you can select one or more ML models as artifacts for the pipeline, so updating a
model in the registry can now trigger a release or deployment pipeline:

Figure 13.2: The Azure DevOps release pipeline

Once you understand the benefits of source code version control to your application
code, you will understand that it makes a lot of sense for your trained models as well.
However, instead of readable code, you now store the model artifacts—binaries that
contain the model weights and architecture—and metadata for each model.

The ability to enable MLflow Tracking with your Azure Machine Learning workspace is
another option in terms of tracking and logging experiment metrics and artifacts. The
integration of MLflow with Azure Machine Learning enables you to explore a number of
options. For example, when you're using MLflow Tracking for an experiment, and you've
set up MLflow experiments, you can store the training metrics and models on a central
environment within the Azure Machine Learning workspace. If you have read through
this book from the beginning, you will recall that we have previously talked about the
capabilities and functionalities across the different aspects of Azure Machine Learning.
Therefore, if you deploy an MLflow experiment to your Azure Machine Learning—
which is possible by deploying the experiment as a web service—you can still use all the
functionalities with Azure Machine Learning, such as monitoring capabilities and the
ability to detect data drift from your models.

Ensuring reproducible builds and deployments | 385

Scripting your environments and deployments

Automating everything that you do more than once will ultimately save you a lot of time
during development, testing, and deployment. The good thing with cloud infrastructure
and services such as Azure Machine Learning and Azure DevOps is that the services
provide you with all the necessary tools to automate every step easily. Sometimes,
you will get an SDK, and sometimes, a specific automation will be built into the SDK
directly—we have seen this for ML deployments where we could simply spin up an AKS
cluster using Azure Machine Learning.

First of all, if you haven't done so already, you should start organizing your Python
environments into requirements, pyenv, or conda files, and always start your projects
with a clean standard environment. Whenever you add a package, add it to your
requirements file and re-initialize your environment from the requirements file.
This way, you'll ensure that you always have the libraries from your requirements file
installed and nothing else.

Azure DevOps can help you with this by running integration tests on clean images,
where all of your used tools need to be installed automatically during the test. This
is usually one of the first tasks to implement on an Azure DevOps pipeline. Then,
whenever you check in new code and tests to your version control system, the Azure
DevOps pipeline is executed and also tests the installation of your environment
automatically. Therefore, it's good practice to add integration tests to all of your used
modules, such that you can never miss a package definition in your environment.

Figure 13.3 shows you how to add a simple Python task to a release pipeline:

Figure 13.3: Adding a Python task to a release pipeline

386 | MLOps—DevOps for machine learning

If you have followed the previous chapters in this book, you might have figured out
by now why we did all the infrastructure automation and deployments through an
authoring environment in Python. If you have scripted these things, you can simply run
and parameterize these scripts in the Azure DevOps pipelines.

The next step, which is usually a bit more difficult to achieve, is to script, configure, and
automate the infrastructure. If you run a release pipeline that generates a model, you
most likely want to spin up a fresh Azure Machine Learning cluster for this job so you
don't interfere with other release or build pipelines or experimentation. While this level
of automation is very hard to achieve on on-premises infrastructures, you can do this
easily in the cloud. Many services, such as ARM templates in Azure or Terraform from
HashiCorp, provide full control over your infrastructure and configuration.

The last part is to always automate deployments, especially with Azure Machine
Learning. Deployments can be done through the UI and we know it's easy to click and
configure the right model, compute target, and scoring file from there. However, doing
so using code doesn't take much longer and gives you the benefit of a repeatable and
reproducible deployment. If you have ever wondered whether you could simply deploy
a new scoring endpoint to an AKS cluster—or even, simply, to no-code deployments—
whenever you change the model definition, then let me tell you that this is exactly what
you are supposed to do.

You will often be confronted to do the same thing in many different ways; for example,
deploying an ML model from Azure Machine Learning via the CLI, Python, the UI, or a
plugin in Azure DevOps. Figure 13.4 shows the package for deploying ML models directly
through a task in Azure DevOps:

Figure 13.4: Deploying ML models in Azure DevOps

However, I recommend you stick to one way of doing things and then do all the
automation and deployments in the same way. Having said this, using Python as the
scripting language for deployments and checking your deployment code in version
control is a good approach to take.

Validating your code, data, and models | 387

Reproducible builds and release pipelines are key and they have to begin at the
infrastructure and environment level. Within the cloud, especially in Azure, this should
be very easy, as most tools and services can be automated through the SDK.

Note

You can find an up-to-date example of an Azure Machine LearningOps pipeline in
the Microsoft GitHub repository: https://github.com/microsoft/MLOps.

The Azure Machine Learning team put a lot of work into the SDK so that you can
automate each piece, from ingestion to deployment, from within Python. Therefore,
I strongly recommend you use this functionality.

Validating your code, data, and models
When implementing a CI/CD pipeline, you need to make sure you have all the
necessary tests in place to deploy your newly created code with ease and confidence.
Once you are running a CI or a CI/CD pipeline, the power of automated tests will
become immediately evident. It not only protects certain pieces of code from failing
while you are developing them, but it also protects your entire process—including
the environment, data requirements, model initialization, optimization, resource
requirements, and deployment—for the future.

When implementing a validation pipeline for our ML process, we align ourselves with
the classical application development principles:

• Unit testing

• Integration testing

• End-to-end testing

We can translate these testing techniques directly to input data, models, and the
application code of the scoring service.

Rethinking unit testing for data quality

Unit tests are essential to writing good-quality code. A unit test aims to test the
smallest unit of code—a function—independently of all other code. Each test should only
test one thing at a time and should run and finish quickly. Many application developers
run unit tests either every time they change the code, or at least every time they submit
a new commit to version control.

https://github.com/microsoft/MLOps

388 | MLOps—DevOps for machine learning

Here is a simple example of a unit test written in Python using the unittest module
provided by the standard library in Python 3:

import unittest

class TestStringMethods(unittest.TestCase): def test_upper(self):

 self.assertEqual('foo'.upper(), 'FOO')

As you can see, we run a single function and test whether the outcome matches a
predefined variable.

In Python, and many other languages, we differentiate between frameworks and
libraries that help us to write and organize tests, and libraries to execute tests and
create reports. pytest is a great library to execute tests, and so is tox. unittest and mock
help you to set up and organize your tests in classes and mock out dependencies on
other functions.

When you write code for your ML model, you will also find units of code that can, and
should, be unit tested and should be tested on every commit. However, ML engineers,
data engineers, and data scientists now deal with another source of errors in their
development cycle: data. Therefore, it is a good idea to rethink what unit tests could
mean in terms of data processing.

Once you get the hang of it, many doors open. Suddenly, you can see your input data
feature dimensions as a single unit of something that you need to test in order to
ensure that it is fulfilling requirements. This is especially important as we are always
thinking of collecting new data and retraining the model at one point—if not even
retraining it continuously as new training data is collected. Therefore, we always want
to make sure that the data is clean.

So, when dealing with changing data over time and implementing CI/CD pipelines,
you should always test your data to match the expected criteria. Good things to test in
relation to each dimension include the following:

• Unique/distinct values

• Correlation

• Skewness

• Minimum/maximum values

• The most common value

• Values containing zero

Validating your code, data, and models | 389

Your unit test could look like the following example, and you can test all the individual
requirements in separate tests:

import unittest import pandas as pd

class TestDataFrameStats(unittest.TestCase):

 def setUp(self):

 # initialize and load df

 self.df = pd.DataFrame(data={'data': [0,1,2,3]}) def

 test_min(self):

 self.assertEqual(self.df.min().values[0], 0)

In the preceding code, we used unittest to organize the unit test in multiple functions
within the same class. Each class could correspond to a specific data source, where we
have wrappers testing each feature dimension. Once set up, we can install pytest and
simply execute pytest from the command line to run the test.

In Azure DevOps, we can set up pytest or tox as a simple step in our build pipeline. For
a build pipeline step, we can simply add the following block to the azure-pipelines.yml
file:

- script: |

 pip install pytest

 pip install pytest-cov

 pytest tests --doctest-modules

 displayName: 'Test with pytest'

In the preceding code, we first installed pytest and pytest-cov to create a pytest
coverage report. In the next line, we executed test, which will now use the dataset and
compute all the statistical requirements. If the requirements are not met according
to the tests, the tests will fail and we will see these errors in the UI for this build. This
adds great protection to your ML pipeline, as you can now ensure that no unforeseen
problems with the training data make it into the release without you noticing.

Unit testing is essential, and so is unit testing for data. As with testing in general, it will
take some initial effort to be implemented, the value of which isn't immediately obvious.
However, you will soon see that having these tests in place will give you some peace of
mind when deploying new models faster, as it will catch errors with the training data at
build time and not when the model is already deployed.

390 | MLOps—DevOps for machine learning

Integration testing for ML

In application development, integration testing tests the combinations of multiple
smaller units as individual components. You normally use a test driver to run the test
suite and mock or stub other components in your tests that you don't want to test.
In graphical applications, you could test a simple visual component while mocking
the modules the component is interacting with. In the back-end code, you test your
business logic module while mocking all dependent persistence, configuration, and
UI components.

Integration tests, therefore, help you to detect critical errors when combining multiple
units together, without the expense of scaffolding the entire application infrastructure.
They sit between unit testing and end-to-end testing and are typically run per commit,
branch, or PR on the CI runtime.

In ML, we can use the concept of integration testing to test the training process of
an ML pipeline. This can help your training run find potential bugs and errors during
the build phase. Integration testing allows you to test whether your model, pretrained
weights, a piece of test data, and optimizer can yield a successful output. However,
different algorithms require different integration tests to test whether something is
wrong in the training process.

When training a deep neural network model, you can test a lot of interesting aspects
with integration tests. Here is a non-exhaustive list:

• Verify correct weight initialization

• Verify default loss

• Verify zero input

• Verify single-batch fitting

• Verify activations

• Verify gradients

Using a similar list, you can easily catch cases where all activations are capped at the
maximum value (for example, 1) in a forward pass, or when all gradients are 0 during
a backward pass. Any experiment, test, or check you would perform manually before
working with a fresh dataset and your model can, in theory, be run continuously in your
CI runtime. So, any time your model gets retrained or fine-tuned, these checks run
automatically in the background.

Validating your code, data, and models | 391

A more general assumption is that when training a regression model, the default mean
should be close to the mean prediction value. When training a classifier, you could
test the distribution of the output classes. In both cases, you can detect issues due to
modeling, data, or initialization error sooner rather than later, and before embarking on
the costly training and optimization process.

In terms of the runner and framework, you can choose the same libraries as used for
unit testing because, in this case, integration testing differs only in the components that
are tested and the way they are combined. Therefore, unittest, mock, and pytest are
popular choices for scaffolding your integration testing pipeline.

Integration testing is essential for application development and for running end-to-end
ML pipelines. It will save you a lot of worry, trouble, and expense if you can detect and
avoid these problems automatically.

End-to-end testing using Azure Machine Learning

In end-to-end testing, we want to make a request to a deployed service in a staging
environment and check the result of the service. To do so, we need to deploy the
complete service altogether. End-to-end testing is critical for catching errors that are
created when connecting all the components together and running the service in a
staging or testing environment without mocking any of the other components.

In ML deployments, there are multiple steps where a lot of things can go wrong if not
tested properly. Let's discard the more straightforward ones, where we need to make
sure that the environment is correctly installed and configured. A more critical aspect
of the deployment in Azure Machine Learning is the code for the application logic itself:
the scoring file. There is no easy way to test the scoring file, the format of the request,
and the output together, without a proper end-to-end test.

As you might imagine, end-to-end tests are usually quite expensive to build and to
operate. First, you need to write code and deploy applications simply to test the code,
which requires extra work, effort, and costs. However, this is the only way to truly test
the scoring endpoint in a production-like environment from end to end.

The good thing is that by using Azure Machine Learning deployments, end-to-end
testing becomes so easy that it should be part of everyone's pipeline. If the model allows
it, we could even do a no-code deployment where we don't specify the deployment
target. If this is not possible, we can specify an Azure Container Instances (ACI) as a
compute target and deploy the model independently. This means taking the code from
the previous chapter, wrapping it in a Python script, and including it as a step in the
build process.

392 | MLOps—DevOps for machine learning

End-to-end testing is usually complicated and expensive. However, with Azure Machine
Learning and automated deployments, a model deployment and sample request could
just be part of the build pipeline.

Continuous profiling of your model

Model profiling is an important step during your experimentation and training phase.
This will give you a good understanding of the amount of resources your model will
require when used as a scoring service. This is critical information for designing and
choosing a properly sized inference environment.

Whenever your training and optimization processes run continuously, your model
requirements and profile might evolve. If you use optimization for model stacking or
automated ML, your resulting models could grow bigger to fit the new data. So, it is
good to keep an eye on your model requirements to account for deviations from your
initial resource choices.

Luckily, Azure Machine Learning provides a model profiling interface, which you can
feed with a model, scoring function, and test data. It will instantiate an inferencing
environment for you, start the scoring service, run the test data through the service,
and track resource utilization.

Summary
In this chapter, we introduced MLOps, a DevOps-like workflow for developing,
deploying, and operating ML services. DevOps aims to provide a quick and high-quality
way of making changes to code and deploying these changes to production.

We first learned that Azure DevOps gives us all the features to run powerful CI/CD
pipelines. We can run either build pipelines, where steps are coded in YAML, or release
pipelines, which are configured in the UI. Release pipelines can have manual or multiple
automatic triggers—for example, a commit in the version control repository or if the
artifact of a model registry was updated—and creates an output artifact for release or
deployment.

Version-controlling your code is necessary, but it's not enough to run proper
CI/CD pipelines. In order to create reproducible builds, we need to make sure that
the dataset is also versioned and that pseudo-random generators are seeded with a
specified parameter.

Summary | 393

Environments and infrastructure should also be automated and deployments can be
done from the authoring environment.

In order to keep the code quality high, you need to add tests to the ML pipeline. In
application development, we differentiate between unit, integration, and end-to-end
tests, where they test different parts of the code, either independently or together with
other services. For data pipelines with changing or increasing data, unit tests should
test the data quality as well as units of code in the application. Integration tests are
great for loading a model or performing a forward or backward pass through a model
independently from other components. With Azure Machine Learning, writing end-to-
end tests becomes a real joy, as they can be completely automated with very little effort
and expense.

Now you have learned how to set up continuous pipelines that can retrain and optimize
your models and then automatically build and redeploy the models to production. In the
final chapter, we will look at what's next for you, your company, and your ML services
in Azure.

Congratulations, you made it—what an incredible journey you've been on! By now, you
should have learned how to preprocess data in the cloud, experiment with ML models,
train deep learning models and recommendation engines on auto-scaling clusters, and
optimize models and deploy them as web services to Kubernetes. Also, in the previous
chapter, we learned how to automate this process as an MLOps pipeline, while ensuring
high-quality builds and deployments.

In this last chapter, we will look at the most important points during this journey and
help you to make the right decisions when implementing your ML project on Azure. It's
easy to get lost or overwhelmed by technological and algorithmic choices; you could
dive deep into modeling, infrastructure, or monitoring without getting any closer to
having a good predictive model.

First, we will again remind you that ML really is mostly about data. AI should probably
be called data cleansing and labeling, but of course, this doesn't sound as good as AI.
You will come to understand that your data is key to great performance and hence the
only thing you should care about at first. Your data is all that matters!

What's next?

14

396 | What's next?

Once that's been covered, we will take a little look at the future, where ML will be
mostly automated—or branded as MLaaS. It's always great to understand where the
future is heading, and in case of AI, it is meta-learning and ML models that already
know which models you should use and stack to achieve good predictive performance.
And what is left when ML is fully automated? Exactly—your data!

We will then talk about the constant change and evolution of cloud services, especially
focusing on PaaS offerings. We will take a look at why PaaS solutions are built and what
their foundation is. This will help you know how to best prepare for change and why
you are still betting on the right foundation despite the ever-coming change.

We will be covering multiple sections about ML without even talking about ML, but only
about the importance of data. I know you must feel betrayed, disappointed, or confused.
Where are the deep neural networks? Where are the 100 million parameters that we
need to train? Where are all the cool new frameworks that we should try? Where are
the TPUs and FPGAs that are supposed to run these models?

In the section following that, we will take a look at some important infrastructure and
monitoring best practices when training and deploying ML models in Azure.

Lastly, we will talk about systematic measurements and rollouts of ML models. You will
find out that in this field where we can track, measure, and tune everything, we won't
rely on personal feelings, taste, or intuition. We measure the performance of ML models
using hard metrics, we A/B test them for comparison, and we roll out the best version
for our users.

The following topics will be covered in this chapter:

• Understanding the importance of data

• The future of ML is automated

• Change is the only constant—preparing for change

• Focusing first on infrastructure and monitoring

• Controlled rollouts and A/B testing

Understanding the importance of data | 397

Understanding the importance of data
Many algorithmic problems for predictions and model fitting are hard to model,
compute, and optimize using classic optimization algorithms or complex heuristics.
Supervised machine learning provides a powerful new way to solve the most complex
problems using optimization and a ton of labeled training data. The more data there is,
the better the model.

One important thing to remember when working with ML algorithms is that models
are powered by the training data you provide them and the training labels. Good data
is the key to good performance. By data, we usually mean training data and using label
annotations, one of the most notorious but also most important tasks in an ML project.

In most ML projects, you'll spend over 75% of the time with data analysis,
preprocessing, and feature engineering. Understanding your data inside and out is
critical to developing a successful predictive model. Think about it this way—the only
thing that makes you stand out from your competition is your data. Most likely, your
competitors have access to a similar set of algorithms, optimizations, and compute
infrastructure as you; the only thing they don't have is your data (hopefully). Hence,
this is where your secret to success lies: in understanding, interpreting, modeling, and
preparing your data for high-quality predictions.

It's also important to keep in mind that the biggest opportunity you have to increase
the predictive baseline performance of any of your models is to improve your data,
for example, through better feature engineering or the addition of more or new data.
Don't get lost trying, tuning, and stacking models—rather, spend most of your time and
resources on data preprocessing and feature engineering.

Feature engineering is where you can shine and win the prediction game. Are you
dealing with dates? Pull in other data sources, such as local and global holidays, and
nearby events; add relative dates, for example, days before a holiday, days before a
weekend; and so on.

Are you dealing with locations, cities, or countries? Pull in demographic data, pull in
political data, pull in geographic data. You get the point: the better your data gets, the
better your model will be.

398 | What's next?

There is only so much that your model can do. Yes, you can stack multiple models,
tune and optimize them, optimize for different metrics, and so on. However, your
biggest leverage is your data. A good plan for any ML model is to start with a very
simple baseline model. Working with categorical data? Choose a gradient-boosted tree
ensemble and stick with the default parameters. Predicting continuous values? Choose
a logistic regression model. Start small and make sure you get your data right before
starting to fiddle with your model.

Always start with a baseline model. Use this model to build all your automation,
infrastructure, and metrics around, then deploy the baseline model. It's worth noting
that the baseline model should perform better than a random approach. Once the
pipeline is finished, you can now dive into the data, add new data, perform better
feature engineering, deploy again, test, and re-iterate. Reducing your model to a
primitive baseline model is a difficult step, but it will help you to succeed in managing
your priorities during the first phase of the project.

Why is the baseline model approach so important? Because it sets your mindset for an
iterative project, where you constantly measure, add data, retrain, and improve your
model. Your model will require retraining and you need to measure when this is the
case. In order to retrain, you need new training data.

In a perfect setup, you would install a continuous data collection pipeline that collects
new training data and training labels directly from your current product. Does your
model predict search relevance? Collect search queries and the clicked results. Does
your model predict fraud? Collect new data and the results of manually verified fraud
cases. Does your model predict hashtags? Track predictions and let your users change
them if they're not accurate.

In all these examples, we continuously track relevant training data, which we can use
for constant retraining and fine-tuning. Having this constant stream of training data
could be the competitive advantage for your business that sets you up for success.
Hence, when you are in charge of an ML project, think about how you are going to
retrain the model in the future.

Last but not least, you need to get C-level buy-in for a data strategy. Data is your fuel—
you need loads of it to implement and improve ML models. This often requires a mental
shift in most companies, as data is now directly used for predictions. Hence, data
quality matters, data lineage is important so that you can understand where it came
from, timeliness is important, and correctness is absolutely essential. So, make sure
that data is a first-class citizen in your company that gets the support, love, and care it
deserves.

The future of ML is automated | 399

The future of ML is automated
Training an ML model is a complex iterative process that includes data preparation,
feature engineering, model selection, optimization, and deployment. Above all, an
enterprise-grade end-to-end ML pipeline needs to be reproducible, interpretable,
secure, and automated, which poses an additional challenge for most companies in
terms of know-how, costs, and infrastructure requirements.

In previous chapters, we learned the ins and outs of this process, and hence we can
confirm that there is nothing simple or easy about it. Tuning a feature engineering
approach will affect model training; the missing value strategy during data cleansing
will influence the optimization process.

On top of all this, the information captured by your model is rarely constant and
therefore most ML models require frequent retraining and deployments. This leads to
a whole new requirement for MLOps: a DevOps pipeline for ML to ensure continuous
integration and continuous deployment of your data, pipelines, and models. We covered
this in a previous chapter.

Automated Machine Learning helps to simplify this complex iterative process by
automating many of the challenges in AI. Instead of manually tuning the input data, then
selecting, optimizing, and deploying an ML model, an Automated Machine Learning
service just requires the input data as well as a few business-related configurations,
such as the type of prediction to train and perform.

The Azure Automated Machine Learning service currently allows the user to choose
between classification, regression, or time-series forecasting tasks. By automating
all manual steps, the service can optimize the complete ML pipeline and even stack
multiple models to improve prediction performance. The outcome is a single model.
The biggest benefit of this is that the user can now focus on the most important part of
the ML process: understanding, acquiring, and cleaning data.

In many cases, Automated Machine Learning services will outperform manually trained
models while requiring significantly less in the way of training and operation costs. The
reason for this is that many tasks, such as choosing the correct categorical embedding,
handling imbalanced data, selecting the best model, finding the best parameters, and
combining multiple models to improve performance, can be systematically optimized as
opposed to being chosen manually.

400 | What's next?

Every major cloud provider offers mature services to perform Automated Machine
Learning in the cloud and functionalities to deploy these models conveniently.
Automated Machine Learning is a great way to save time and costs while providing
your existing employees with the tools needed for training complex end-to-end ML
pipelines. This helps your company to focus on understanding your data and business
requirements rather than tinkering with ML models and tools. This makes Automated
Machine Learning a real service—MLaaS.

Change is the only constant – preparing for change
When working with any of the big cloud providers, you should differentiate their
offerings broadly into three types of service:

• Infrastructure as a Service (IaaS)

• Platform as a Service (PaaS)

• Software as a Service (SaaS)

IaaS services are all-infrastructure abstractions such as virtual machines (compute),
disks (storage), and networking; PaaS services are platforms built on top of these
components with additional functionality that exposes the underlying services. SaaS
services, in contrast, are just exposed through a UI and don't give you any access to the
underlying data.

Azure Machine Learning is a great example of a PaaS offering, as it combines different
infrastructure services, UIs, and SDKs to give you great new features and full access to
the underlying services, such as blob storage, training clusters, and container registries.
You will also see on your monthly Azure bill that you will spend most of your money on
infrastructure services when using a PaaS solution.

While IaaS solutions build the foundation for all other cloud services, they are not very
likely to change drastically over the next few years. New improvements will make their
way to the market, such as ultra SSDs and new compute instance types, but the existing
APIs and offerings are not likely to be discontinued.

The same is not true for PaaS services, as they are usually built as managed services
for when a lot of customers all have a similar problem to solve. PaaS solutions are
built to help customers use other infrastructure services without implementing tons
of boilerplate over and over again. How many times have you seen a feature of Azure
Machine Learning and thought, "Hey, I could easily implement this on my own"? Trust
me, you are not alone. And that's why PaaS exists in the first place.

Change is the only constant – preparing for change | 401

However, the downside with customer-driven needs is that those needs and usage
patterns are constantly evolving. New use cases are coming up (such as MLOps) that
ask for new services or extensions to existing services to be supported. Hence, you
should always expect that PaaS will change over time, and in this section, I will help you
prepare for this change.

When reading through this book, you might have found a small discrepancy between
features or APIs that we describe and the current APIs and features in Azure. If you
were understandably confused and asked yourself how this book could possibly already
be out of date, I want to assure you that what we presented is the right technology
to bet on. PaaS offerings in general and MLaaS offerings specifically undergo massive
changes and improvements all the time. Expect change!

Expect names to change—this is probably the most common change. Companies are
notoriously bad at naming products, and Azure and all other cloud providers are no
exception. This might look like a big change or inconvenience, but in fact it is nothing
more than changing the name of a service or component or hiding it somewhere else
in the UI. In the past year, we went from ML Studio Azure Machine Learning to Azure
Machine Learning, and compute instances were called Azure Batch, BatchAI, AML
Compute, and training clusters. Don't let this distract you—expect some new interesting
names popping up for the functionality that you know and love.

Expect UIs to change—this is the most visible and quite a common pattern in Azure
lately. Many services get revamped UIs, some integrated into the Azure UI and some in
a separate application. Expect some functionality to be exposed only in one UI and not
another. Most often, however, a new UI means just the same or similar functionality
being accessible through a new interface. This is one of the reasons why we work so
much with the Python API instead of the graphical interface—and so should you.

Expect classes to change and packages to move around in the SDK. Most APIs of most
cloud providers for ML solutions are constantly evolving (Automated Machine Learning
and MLOps are currently in preview and undergo loads of changes). Azure has invested
a lot of money in its ML service, so change is inevitable. A good way to prepare for this
change is to abstract code into specific implementations that can be swapped out easily
with new functionality. Another good practice is to be cautious with library updates, but
also don't stay behind the most recent version for too long.

Do you agree that change is the only constant, given all these circumstances? And also,
don't forget that all PaaS solutions ultimately build on an IaaS solution, which provides
a rock-solid foundation for your compute, storage, and networking infrastructure—a
foundation using auto-scale multi-GPU training clusters and real-time scoring
deployments on Kubernetes.

Despite constant change, you are building on the right foundation!

402 | What's next?

Focusing first on infrastructure and monitoring
Successfully applied ML projects depend on an iterative approach to tackle data
collection, data cleansing, feature engineering, and modeling. After a successful
deployment and rollout, you should go back to the beginning, keep an eye on your
metrics, and collect more data. By now, it should be clear that you will definitely repeat
some of your development and deployment steps during your project.

Getting the infrastructure around your ML project right will save you a lot of trouble.
The key to successful infrastructure is automation and versioning, as we discussed in
the previous chapter. So, I recommend that you take a few extra days to set up your
infrastructure automation and register your datasets, models, and environments—all
within Azure Machine Learning.

The same is true for monitoring. In order to make educated decisions about whether
your model is working as intended, whether the training data is still accurate, or
whether the resource utilization is high enough, you need accurate metrics. Adding
metrics to a project after deployment is quite tricky, and so you should really be aware
of what you measure, what you monitor, and what you alert on. Take some extra time at
the beginning of your project to think about the metrics that you are going to track.

Prioritizing infrastructure while working on the data and models is hard. If you can
afford the luxury to split these into separate teams for ML infrastructure, modeling,
and data, then this might not be the case for you. However, this is often not feasible.
In order to avoid this prioritization issue, I always recommend starting with a simple
baseline model and start building your infrastructure automation using the simple
baseline model.

Pick the simplest model with default parameters for your use case, a small set of
training data, and the most important engineered features. In the next step, you build
this into a pipeline that builds your model automatically and deploys it into a staging
environment. The great thing about this approach is that you automatically prioritize
infrastructure and always output a deployed scoring service. This will set you up for
success.

As a next step, dive into the data. Make sure you understand the data and its quality,
how to fill missing values, and how to preprocess features. You can add additional data
and work on feature engineering to turn your raw input data into interpretable data. If
you pick a good baseline model, this work should greatly improve the performance of
the baseline and give your colleagues a scoring service API to use with the new service.

Controlled rollouts and A/B testing | 403

Once you are confident that you have built a solid data pipeline, you can tackle
modeling, including model selection, training, validation, optimization, and stacking.
Again, you should be able to see incremental improvements that can be measured
and continuously deployed to any QA environment. Once your performance is good
enough, roll out the service to your customers and start collecting metrics and more
training data.

When you develop using compute infrastructure in the cloud, it is easy to quickly spend
a few thousand dollars for a couple of unused or under-utilized virtual machines. So,
I would also recommend that you regularly check the number of machines and their
utilization. If something is not used anymore, shut it down or scale it to only a few
instances. Remember that the cloud's number-one benefit is scalable infrastructure. So,
please take advantage of it. Shut down your authoring notebook machines when you
don't use them anymore.

Controlled rollouts and A/B testing
Deployments of ML models can be considered similar to that of features and changes in
application development. Consider a retrained and reoptimized model to be similar to
a small UI change in the application when rolling a model out to your users. This might
not be obvious at first, but put yourself into a user's shoes in a scenario where suddenly
a recommendation algorithm changes from its previous behavior.

Rollouts should never be uncontrolled or based on personal feelings or preferences—
they should be based solely on hard metrics. The best and most systematic way to roll
out new features and updates to your users is to define a key metric, roll out your new
model to one section of the users (group B) and serve the old model to the remaining
section of the users (group A). Once the metrics for the users in group B exceed the
metrics from group A over a defined period of time, you can confidently roll out the
feature to all your users.

This concept is called A/B testing and is used in many tech companies to roll out new
services and features. As you can see in the Figure 14.1, you split your traffic into a
control group and a challenger group, where only the latter is served the new model:

Figure 14.1: Splitting traffic into control and challenger groups

404 | What's next?

Another best practice for deploying code changes was covered in a previous chapter:
blue-green deployments. In this deployment method, you deploy a separate service
with each code change. Each service connects to your database but each service
contains a different version of your code. First, you serve all traffic from the old
service. Once the new service is up and running and the health checks have finished
successfully, the router will send all requests to the new service. Finally, if there are no
active requests left on the old service, you can shut it down.

This process is a very safe way to update stateless application services with zero or
minimal downtime. It also helps you to fall back to the old service if the new one doesn't
deploy successfully. The Figure 14.2 shows the blue-green strategy, where blue and
green represent completely separate versions of your application service or ML model.
We can see that both stateless services connect to the same database, and we switch
from one service to the second fully-functional service:

Figure 14.2: The blue-green strategy

A/B testing and blue-green deployments work very well together as they are really
similar. Both require the deployment of a fully functional service that is accessible to
a subset of your users through routing policies. If you use Azure Machine Learning for
your deployment and rollout strategy, you are very well covered. First, all deployments
through Azure Machine Learning to ACI or AKS are blue-green deployments, which
makes it easy for you to fall back to a previous version of your model.

Summary | 405

Azure Machine Learning deployments on AKS support up to six model versions behind
the same endpoint to implement either blue-green deployments or A/B testing
strategies. You can then define policies to split the traffic between these endpoints; for
example, you can split traffic by percentage. Here is a small code example of how to
create another version on an AKS endpoint that should serve another version of your
model to 10% of the users:

from azureml.core.webservice import AksEndpoint

endpoint.create_version(version_name = "version-2",

 inference_config=inference_config,

 models=[model],

 tags = {'modelVersion':'2'},
 description = "my second version", traffic_percentile = 10)

In the preceding code, we show the preview feature of controlled rollouts for Azure
Machine Learning and AKS. We use a different combination of model and inference
configuration to deploy a separate service under the same endpoint. The traffic
splitting now happens automatically through routing in Kubernetes. However, in order
to align with a previous section of this chapter, expect this functionality to improve in
the future, as it gets used by many customers when rolling out ML models.

Summary
In this chapter, we took a look at a few things from a high level—data, automation,
change, infrastructure, monitoring, and rollouts. I hope that our coverage of these
topics made sense to you after reading through experimentation, feature engineering,
training, optimization, and deployment in the earlier chapters.

It's important to understand that your data will control and influence everything, and
hence making data a first-class citizen in your company is a first great step. Hiring a VP
of Data and defining standards on data quality, lineage, and discoverability are just a few
of the measures you can take.

Automated Machine Learning will run the world in a couple of years. The idea is quite
simple: a trained meta-model will always be better at proposing, training, optimizing,
and stacking models for higher predictive performance than humans. This makes
total sense; it's just another parameter optimization step that also includes the model
architecture. Another interesting thought is that Automated Machine Learning will offer
true MLaaS to users who aren't ML-savvy. Maybe a prediction column will be provided
in Excel, or an ML transformation step in Power BI, meaning regular office users can
suddenly harness the power of ML through spreadsheet applications.

406 | What's next?

We mentioned in this chapter that change is inevitable when working with PaaS in
the cloud. This is because PaaS solutions are designed to implement typical customer
solutions and drive you toward consuming more infrastructure services. As customer
needs evolve, so do these PaaS offerings. Hence, a good takeaway is to not get too
attached to product names, UIs, or SDK packages, but rather to understand whether
the underlying infrastructure is the right thing for you. If so, then you can easily
abstract the implementation details from your code to be prepared for change.

In the final section, we covered the idea of controlled rollouts through A/B testing and
blue-green deployments. These are best practices for ML deployments, as blue-green
deployments help you to implement zero-downtime deployments while A/B testing
enables you to verify and compare the performance of a new model against a control
group.

We hope you enjoyed this book and learned how to master Azure Machine Learning.
Reach out to us on social media and tell us what you learned, what you liked, and also
what could be improved in this book. We would love to hear your feedback.

Until then, happy machine learning!

By developers,
for developers
Microsoft.Source newsletter

Get technical articles, sample
code, and information on
upcoming events in
Microsoft.Source, the
curated monthly developer
community newsletter.

● Keep up on the latest
 technologies
● Connect with your peers
 at community events
● Learn with
 hands-on resources

Sign upSign up

http://aka.ms/msftsource

About

All major keywords used in this book are captured alphabetically in this section. Each one is
accompanied by the page number of where they appear.

Index

>

A
accelerate: 18, 368-369
active: 18, 117, 158,

333, 404
acyclic: 129, 151, 350
adaboost: 222
adadelta: 316
adapters: 140
aggregate: 86, 372
algorithm: 4, 16, 22, 27-28,

30-31, 38-39, 53-54,
101, 105, 107, 176-177,
190-191, 195-199, 203,
220-225, 253, 258, 286,
309-310, 326, 337-338,
342-343, 352, 403

amazon: 324-325,
327-328, 334

analysis: 15, 24, 26, 32,
44, 49, 53, 72, 97,
104-105, 109, 139, 147,
186, 197, 205-206,
274, 351, 370, 397

apache: 302, 306,
311, 314-315, 321

append: 163
argument: 119, 127,

130-132, 134, 139-140,
154-155, 157, 159-161,
163, 168, 198, 231, 233,
259, 264, 266, 276,
293, 319, 357, 374

arrays: 127-128, 254,
258, 350, 370

artifacts: 61, 71, 73, 75,
82, 85, 88, 90, 96, 109,
146, 236, 355-356,
380, 383-384

assets: 351
attribute: 114, 201, 277
auditing: 119, 145, 379, 383
augmented: 245, 253,

258-259, 268
automated: 29
authoring: 41-42, 44, 58,

61, 67, 71-72, 76-77, 89,
93, 96, 114, 119, 147, 156,
169, 225, 230, 236-237,
253-254, 260, 281, 314,
353, 356-358, 361,
374, 386, 393, 403

automation: 25, 67, 73, 371,
385-386, 398, 402, 405

automl: 295-296
automlstep: 148
automobile: 55
auto-scale: 152, 401
azure-cli: 76
azureml: 42, 56, 63, 74-75,

77-78, 84, 88-89, 91-95,
114, 126-128, 131, 135,
139, 149-152, 157-160,
162-167, 226-227,
229-232, 237, 260, 264,
275-278, 280-284, 287,
296, 304, 319, 354-357,
359-361, 363-364,
367-369, 374, 405

B
bag-of-words: 22, 100,

176, 186, 187, 189,
190, 193, 194, 195,
198, 199, 208,

bandit: 281, 283-284
barrier: 309, 317, 320
baseline: 12-13, 23-26,

57, 274, 397-398, 402
bayesian: 27, 271-272, 274,

276, 281, 285-290, 298,
309, 320, 326, 338

bearer: 362
binary: 5, 9, 20, 43, 126,

128, 141, 224-226, 234,
244-245, 247, 332,
335-336, 345, 352,
367, 374, 378, 381

bindings: 165, 173, 338
blocks: 54-56, 143,

146-148, 151, 154, 165,
168-169, 171, 302, 308,
326, 340-341, 3

boolean: 131, 138
boosting: 25, 213-214,

218, 221-225, 233-234,
236, 240, 332, 352

bootstrap: 219, 240
boundary: 215,

217, 247-248
boxplots: 8-9
branch: 26, 130, 390
builders: 133, 135

C
callback: 81, 87-88,

234-235, 257, 259,
264-265, 316

categories: 17, 20, 24, 37,
45-47, 49, 177-178, 180,
183, 185, 200, 216

characters: 130,
195-196, 223, 245

classes: 15-16, 43,
101-102, 104, 108, 221,
266, 388, 391, 401

client: 360, 371
cluster: 6, 26, 31, 40-42,

44, 52, 61, 67, 71-72,
89, 91-94, 96, 101-104,
107, 109, 114-115, 147,
149, 153, 157, 163, 214,
222, 229-232, 236-237,
239, 253, 260-261,
263-264, 267-268,
272, 277-278, 295-296,
301-302, 306-307, 314,
317-319, 321, 338, 353,
358, 361-363, 369,
371-372, 385-386

code-first: 40, 53, 169, 171
codegen: 361
cognitive: 36-37, 39,

44-46, 49-53, 67,
203, 205-207, 258

complexity: 27-29,
38, 101, 253

component: 15, 72,
197, 390, 401

compose: 146
compressed: 6, 381

compute: 6, 11-12, 21, 27,
32, 35-38, 40-42, 44,
54, 60-61, 71-72, 74-78,
89, 91-97, 105, 109,
112, 114-116, 119, 129,
135, 143-149, 152-153,
156-157, 161, 163-164,
167, 176, 185-186, 193,
195, 198-200, 202,
208, 214, 219, 221-222,
225-226, 229-232,
235, 239, 251, 253-254,
257-258, 260-262, 264,
268, 274, 277-278, 281,
283, 286, 288, 296-298,
302, 304, 310, 314,
317-321, 327, 330, 337,
339, 345, 350-353,
355-356, 358-363,
365, 368-369, 371-374,
380, 386, 389, 391,
397, 400-401, 403

concurrent: 277-278,
287, 304-305

configure: 57, 63, 66-67,
73, 92-94, 96, 144,
146, 149-151, 154, 159,
162-163, 166, 170,
172-173, 198, 226,
229-230, 232, 235-236,
259-260, 273, 281, 283,
315, 340, 342, 352,
358, 361, 374, 386

constraint: 26, 382
construct: 138, 223, 231,

255-256, 267, 282
consumers: 116,

118, 121, 139

containers: 37, 61, 372-373
continuous: 5, 8, 10-11,

20, 25, 27, 41, 45, 105,
146, 148, 159-160, 178,
201-202, 215, 218,
223-224, 274, 279-281,
286-287, 297, 331, 378,
392-393, 398-399

contrast: 92, 202, 217, 233,
244, 268, 334, 400

controls: 282
conversion: 127, 132,

191, 203, 368
cosine: 21, 193, 324,

329-331, 345
covariance: 100
cpu-based: 277,

304, 312, 366
custom: 3, 32, 35-37,

39-40, 44-45, 49-53,
55, 59, 61, 63, 66-67,
71, 131, 134, 138, 152,
159-160, 164, 166,
203, 207, 231, 234,
255, 258, 265, 267,
314-315, 317, 333, 365,
368-370, 374, 381

cyclic: 21

D
database: 6, 32, 112-113,

125, 152, 192, 246,
290, 382, 404

databricks: 37, 40, 44,
66, 92, 148, 302, 314,
317-318, 370, 379

dataflow: 126-131,
134-135, 137-140

dataframe: 56, 112, 115, 118,
120, 123-124, 155, 227,
229, 232, 295, 330, 389

dataset: 4-5, 7-12, 14-18,
20-21, 25, 37, 56-57,
60-61, 72, 97-103,
105-106, 108, 112-130,
133-134, 137, 139-141,
143, 146-147, 151-157,
164-165, 168, 173,
176-181, 184, 195-196,
198-199, 201, 214, 219,
222-223, 225-229,
232-233, 244, 254,
258-259, 262, 265-266,
289, 293, 295-297,
302-303, 305, 330, 332,
363, 383, 389-390, 392

datastore: 74, 114, 143,
146, 151-154, 156,
160-161, 163-166, 168,
227, 237, 263-264

debugging: 255,
317, 354, 383

decimal: 24, 131-132
decoder: 203
decouple: 119, 148, 154
delimited: 139,

152, 155, 227
dependency: 12-14, 21,

26, 32, 162, 356-357
deployment: 29, 32, 35,

37, 41, 44, 52, 56, 62, 66,
75, 146, 148, 163, 168,
331, 350-356, 358-360,
362-363, 365-369,
371-372, 374, 377-379,
384-387, 391-392,
399, 402, 404-405

derived: 4, 47, 133,
141, 180, 218

detection: 9, 18, 23, 31-32,
37-39, 44-45, 47, 49-50,
53, 67, 147, 159, 206,
214, 244, 265, 351, 370

deviations: 392
devops: 144, 159, 168,

171-173, 375, 377-378,
380-381, 383-386,
389, 392, 399

diagnostic: 372-373
dimension: 7, 10, 20-22,

98, 100, 105, 107,
178, 197, 201, 217,
220, 246, 275, 279,
337, 374, 388-389

distribute: 112, 307,
310, 317, 319-320

diverse: 279, 333,
339, 343, 345

docker: 29, 40, 60, 66,
94-96, 147, 230-231,
237, 264, 278, 350-353,
356-358, 374, 379

domain: 8, 18, 21, 29, 36,
38-39, 45, 49, 53, 244,
249-250, 265-266,
285, 288, 293, 306

downstream: 18

E
eigenvalue: 100
embedded: 6, 29, 91,

140, 204, 239, 365
enable: 161, 165-166, 231,

295, 306, 315, 319,
360, 370, 374, 384

encode: 21-22, 32, 98,
135-136, 178, 200,
223, 228, 340

endpoint: 36, 46, 51, 67,
143, 146, 158-159, 168,
173, 206, 356, 360,
364, 386, 391, 405

end-to-end: 3, 26-27,
32, 35-36, 39-40, 45,
56, 61, 65-67, 116, 140,
144, 146, 148, 168, 176,
203-205, 208, 251,
262, 268, 272, 288-291,
331, 369, 375, 377, 387,
390-393, 399-400

enforcing: 162
engine: 30, 53, 59, 126-127,

165-166, 314, 317-318,
323-326, 329, 331-333,
336, 339, 341, 344, 349

ensemble: 14, 23, 25-26,
28, 105, 213-214,
217-224, 240, 243-244,
250, 274, 289, 302,
305-307, 354, 398

entity: 44, 50, 203,
206, 351

entropy: 14, 224
epochs: 43, 63, 81, 85, 88,

253, 257, 259, 264-265,
271, 276, 282, 302, 316

explode: 195
extract: 17, 20, 22, 46,

111, 113, 125-127,
129-130, 140, 143, 152,
173, 175-176, 185, 188,
191, 200, 206, 213,
232, 252, 306, 351

F
feature: 3-8, 10, 12-18,

20-24, 26-29, 32, 42,
53-54, 59, 66, 79, 86,
97-98, 100-101, 104-105,
107, 109, 111-112,
125-126, 129, 136-137,
145-147, 151, 157, 171,
175-180, 184-185, 187,
193-194, 196-197, 199,
203, 205-206, 208,
217, 220, 223, 226-227,
233-235, 239, 244-245,
250-253, 256, 265-268,
272, 274, 288, 290,
293, 295, 298, 301,
321, 324, 326-327,
329-332, 336, 340, 345,
349, 364, 368-369,
374, 383, 388-389,
397-400, 402-403, 405

fields: 19, 118
fine-tune: 18, 36, 39,

201, 253, 265, 267
frequency: 119, 143, 156,

159-160, 173, 176,
186, 194, 199, 342

function: 20, 26, 51, 56, 79,
84, 87-88, 93, 99, 119,
122-124, 132, 134-135,
137-140, 172, 176, 188,
199, 202, 205-206,
208, 215, 217-218, 222,
224-225, 227, 230-231,
234-235, 246-249, 254,
256, 258-259, 276, 279,
283, 285-286, 297, 307,
317-318, 324, 326, 329,
333-337, 339, 341-345,
353-354, 356, 358, 360,
362, 387-388, 392

G
gaussian: 286, 298
general: 26, 29, 38, 44-45,

73, 107, 124, 128, 134,
140, 216, 236, 243,
260-261, 266, 272,
281, 291, 312, 314, 331,
358, 368, 372, 380,
382, 389, 391, 401

generative: 205
github: 100, 150, 326,

338, 341, 344, 368,
380-381, 387

gradient: 26, 178, 203,
213, 217-218, 222, 224,
234, 236, 239-240, 247,
308, 310-313, 316-318,
320, 332, 337-338, 352

H
histogram: 228, 245
horovod: 302, 310-311,

314-321, 379
hybrid: 37, 252, 324, 326,

339-341, 345, 349, 380
hyperdrive: 28, 100,

148, 154, 271, 275-278,
280-284, 287, 297,
301-302, 304

I
image-: 265
implicit: 205, 244,

324, 326, 334-336,
341, 344-345

inactivity: 96
inception: 249, 363-364

inference: 218, 307, 320,
350, 353, 356-362,
365-366, 368-369,
371, 374, 392, 405

insights: 3, 5, 17-18, 23,
27, 29, 32, 58-59,
62, 96-97, 100, 107,
217, 370, 373-374

iterator: 258-259

J
jupyter: 60-61, 71, 76,

122, 225, 232, 235-237,
253-254, 260-261,
268, 358, 379

K
kubelet: 373
kubernetes: 37, 40-41, 44,

52, 61, 66-67, 272, 314,
318, 353, 358, 361, 371,
373, 378, 395, 401, 405

L
labels: 17-18, 20, 42, 49,

97, 100, 102-103, 105,
112, 200, 204, 227,
232, 252, 255, 258,
313, 374, 397-398

latent: 197, 200, 204,
251, 337-338, 340

lemmas: 191
leverage: 29, 44,

203, 317, 398

linear: 10, 12-13, 15,
19-20, 25, 54, 72, 97,
100-101, 103-105, 109,
147, 177, 197, 202, 217,
244-246, 248, 250, 252,
272, 293, 313, 379

logistic: 13, 19, 23, 26, 217,
244, 250, 272, 398

M
machine: 3-4, 6, 19, 24-26,

28-30, 32, 35-42, 44,
53-67, 71-79, 81-83,
85-92, 94-100, 109,
111-112, 114-117, 119-123,
125-126, 128-129,
140-141, 143-152,
156-157, 159-173, 175,
178, 203, 206, 208,
213-214, 218, 222-223,
225-229, 231-232,
234-240, 243-244,
253-255, 257-258, 260,
263-265, 268, 271-272,
274-275, 277, 280-281,
284-286, 288-298,
301-305, 310-314,
317-321, 323-324, 326,
340-341, 345, 349-350,
352-367, 369-372,
374-375, 377-379, 382,
384-387, 391-393, 397,
399-402, 404-406

median: 5, 8, 10, 12,
125, 281-282, 284

memory: 20, 26, 32, 92,
123, 125, 203, 223, 232,
240, 254, 261-262, 298,
304-305, 307, 312, 320,
338, 355, 360, 362,
365, 367, 371, 373

metadata: 46, 355-356,
374, 383-384

metrics: 8, 21, 24, 30,
32, 43, 50-51, 53, 58,
61-65, 67, 71-73, 75, 78,
84-85, 88, 90, 96-97,
100, 109, 204, 214, 225,
234-235, 238-239, 253,
257, 265, 291, 297, 316,
331, 350, 366, 371-375,
384, 396, 398, 402-403

modeling: 15, 26, 29, 37,
109, 145, 186, 203, 208,
391, 395, 397, 402-403

monitoring: 30, 32, 67, 78,
350, 366, 371-373, 375,
384, 395-396, 402, 405

mutable: 382

N
namespace: 223, 225
nested: 126-128,

138, 215-218, 244,
248-249, 288

network: 23, 43, 203, 205,
244, 248-251, 255, 263,
265-267, 273-274, 282,
288, 303, 310, 312, 350,
366, 371-372, 390

neural: 19-20, 23, 26, 43,
92, 100, 176-177, 203,
205, 218, 243-244, 246,
248, 250, 255, 271-274,
282, 298, 302-303, 338,
350, 366, 371, 390, 396

neuron: 248-249
normalize: 8, 19, 42, 187,

190-191, 193, 335

numeric: 7, 17, 23, 86, 132,
135-137, 139, 176-180,
182, 185-186, 193, 197,
200-202, 207-208,
228, 232, 276, 293, 326,
329-331, 336, 341

nutshell: 223
nvidia: 262, 361, 373

O
openai: 205, 208
openapi: 360
openmpi: 379
operate: 176, 349-350,

358, 365, 391
optimizing: 27, 40-41, 201,

221, 249, 268, 271, 281,
285, 288-289, 399, 405

orthogonal: 20, 100, 136,
178, 184-185, 197, 330

outliers: 5, 7-8, 111
override: 357

P
package: 59, 129, 162,

188, 236, 275, 280, 315,
338, 351, 356, 358,
367-369, 373, 385-386

pandas: 6, 56, 94, 112, 115,
118, 120, 123-124, 126,
133, 155, 183, 226-227,
229, 232-233, 295, 360,
364, 370, 382, 389

parallel: 26, 61, 111, 119,
140, 144, 147-148,
161-164, 167, 169,
173, 229, 248-249,
260, 263, 274-276,
279-280, 284, 301-305,
307, 312, 318, 320

parameter: 24-25, 27-29,
51, 85, 88, 117, 124, 127,
139-140, 157, 159-161,
163, 166, 194, 196,
201, 217, 224-225,
228, 234, 263, 271,
273-289, 297-298,
301-302, 304-305,
309-311, 317-319, 361,
378, 383, 392, 405

parser: 141, 154-155,
157, 233, 264, 276

payload: 46, 51, 206
perceptron: 191, 246-248
pipeline: 3, 18, 29, 32,

35-39, 41, 45, 53-56,
61, 64, 66-67, 74,
78, 112, 119, 124, 129,
139-140, 143-173, 176,
185-189, 193-195, 200,
203-204, 206, 208,
217-218, 226, 250, 259,
272, 288-291, 297-298,
307, 314, 337, 350-351,
354, 362-365, 369-370,
374-375, 377-380,
382-387, 389-393, 395,
398-399, 402-403

pixels: 251
postgresql: 112, 126
powershell: 378
predict: 4, 17-18, 25,

221-222, 226, 235, 252,
273, 287, 289, 297, 309,
331-332, 339, 359, 398

premises: 371
publish: 146, 157-158,

165-166, 364
pycharm: 71
pyplot: 235

pyspark: 44, 66, 115,
118-120, 123-124,
307, 318, 337-339,
353, 360, 382

pytest: 388-389, 391
pytest-cov: 389
python: 23, 40-42, 46, 51,

53, 55-56, 58, 60-63,
65-67, 71-73, 75-79,
85, 89, 92, 94, 96, 112,
114-115, 119, 122-123,
125, 139, 147-149, 155,
159, 162, 165-166, 168,
171-173, 183, 188-189,
201, 203, 214, 223,
229-232, 236, 254-255,
260, 264, 307, 313,
317, 324, 338, 341-344,
352-353, 356-357,
360, 363, 366-367,
370, 373-374, 378-379,
385-388, 391, 401

pytorch: 169, 205, 255,
264, 302, 310-311,
313, 315, 317, 321,
366, 375, 379

Q
quantile: 19, 137, 224-225
queues: 96, 171

R
rastrigin: 286
reactive: 143, 146,

159-161, 173
real-time: 4, 29, 31, 62,

170, 237, 345, 350-351,
353, 355, 357-359, 365,
369-370, 377, 401

real-world: 20-21, 29, 37,
100, 104, 177, 197, 200,
213-214, 216, 302, 320

recurrence: 160
redeploy: 393
redundant: 113, 197
register: 64, 73, 78, 82,

84-85, 91, 97, 109,
111-115, 117, 141, 156,
222, 225-227, 231, 236,
297, 325, 349, 354-358,
367-369, 371, 378, 402

regression: 5, 10, 12-14,
19-20, 23-26, 53-54,
57, 59, 100, 168-169,
177, 213-217, 219,
224-225, 240, 244,
246, 250-252, 272, 291,
293, 331-332, 337, 339,
345, 351, 368-369,
379, 391, 398-399

reiterate: 253
release: 105, 380,

384-387, 389, 392
repository: 100, 150,

326, 338, 368,
380-381, 387, 392

requests: 30, 46, 51, 159,
206, 341, 343-344, 351,
362, 364-365, 380, 404

resnet: 244, 266-267,
368, 375

response: 30-31, 46,
52, 159, 207, 341,
343-344, 351, 364, 373

retrieve: 92, 114, 123-124,
153-155, 158-159, 172,
227, 229-230, 253, 297,
307, 354-357, 362, 367

runtime: 41, 44, 61,
66-67, 107, 139, 271,
279-282, 317, 349-350,
352-353, 356, 366,
368, 370-371, 375, 390

S
sampling: 25, 27, 123-125,

224, 271, 274-281,
284-289, 297-298, 304

scalable: 28, 32, 49, 72,
82, 89, 116, 141, 239,
253, 326, 338, 349, 351,
358-359, 382, 403

scaling: 19, 137, 239, 253,
258, 278, 295, 301-302,
314, 317, 320, 366, 378

scatter: 12, 98, 101,
284, 308

scenario: 97, 225, 263,
310, 371, 403

scheduling: 88-89, 96,
143, 145-146, 156,
159-160, 162, 164, 167,
173, 225, 236, 284

schema: 126, 140, 360-361
seaborn: 94, 97-98, 229
semantic: 20, 22, 173,

175-177, 185, 189, 194,
197, 200-205, 208,
223, 293, 331, 345

sensor: 39
sequences: 204-205
server: 112, 126, 246,

253, 302, 310-311,
317, 373, 381

sklearn: 66, 180-181, 184,
194, 196, 198-199, 225,
232, 235-236, 252,
295, 297, 307, 354-355,
358-360, 366-367

softmax: 43, 204-205,
255-256, 267, 306

spectrum: 266
staging: 65-66,

72, 391, 402
statistics: 8, 119, 202, 258
status: 10, 63, 77, 80,

84, 86, 119, 260
stemming: 22, 176, 188,

190-191, 193-194,
200, 203, 208

streaming: 30, 214,
324-325, 335

subversion: 380
supervised: 18, 23, 28,

72, 97, 103, 109, 193,
214-215, 265, 397

swagger: 360-361
symmetric: 197
systematic: 396, 403

T
tabular: 6, 125,

152, 155, 227
tagging: 67, 147,

191, 194, 214
telemetry: 32, 66-67,

75, 128, 350, 356,
370, 372, 374-375

tensorflow: 42, 52, 129,
149, 162, 169, 205,
252, 255, 257-258,
264, 268, 277, 302,
310-312, 315, 317, 319,
321, 352-353, 355-356,
366-368, 374-375

terraform: 73, 386
terram: 192
threshold: 32, 51, 136,

220, 246, 281
tokenize: 188
transform: 17, 21-22, 32,

58-59, 111, 129, 131,
134, 137, 141, 143, 152,
177, 179-181, 184, 186,
190, 193-194, 196-199,
206, 208, 226, 245,
293, 335, 339

trigger: 32, 41, 49, 66,
143-144, 146-148,
156-161, 168, 170-173,
341, 357, 363,
365, 380, 384

tuning: 4, 24-25, 27-29, 92,
103, 145, 222, 237, 263,
268, 271-275, 279-280,
282, 284-286, 288-290,
297-298, 301, 304, 320,
379-380, 397, 399

U
upsampling: 265

V
validate: 150, 154-155,

253, 274, 295, 337,
360-361, 379

values: 3, 5-9, 11-12,
19-23, 25, 32, 52, 64,
85-87, 91, 97, 111, 123,
125, 128-129, 131-132,
134-136, 138-139, 141,
163, 175-176, 178-180,
182, 184-186, 199-200,
206, 216, 227, 232,
254, 273-274, 279,
281, 287, 291, 297, 331,
336, 366, 372-373,
388-389, 398, 402

variable: 4-5, 7-8, 10,
12-14, 20-21, 24, 57,
113-114, 201, 203, 217,
232, 234, 245, 280, 388

variance: 19, 100-101,
103, 105-106, 109,
197-198, 219

vector: 19-20, 177, 184,
186-187, 193-194,
197, 201-202, 205,
208, 246-247, 250,
252, 272, 293, 326

velocity: 17
veracity: 17
verbose: 64, 84,

257, 265, 316
virtual: 6, 36, 75, 173,

314, 400, 403
vision: 26, 36-37, 39,

44-46, 49-52, 67,
203, 206, 244-245,
250, 253, 258, 266

visualize: 12, 72, 85, 96-98,
101, 105, 109, 248, 373

vowpal: 341

W
wabbit: 341
waveforms: 245
webhook: 147, 156, 158-159
webservice: 359-360,

374, 405
westus: 74, 206
widget: 90, 235, 237
workflow: 6, 42, 63,

73, 116, 121, 144-148,
151, 157, 165, 173,
263, 358, 369, 392

workspace: 36, 40, 54-56,
60-63, 67, 71-79,
81-82, 85-86, 88-96,
99, 109, 112-115, 117,
122, 146-147, 149-152,
156, 158-160, 162, 164,
166-172, 225-230, 232,
234, 238-239, 254, 260,
263-265, 278, 281, 287,
304, 352, 354-357, 361,
363, 367, 370, 372, 384

wrapper: 233, 317, 321, 373

X
xgboost: 213, 222, 240,

289, 306-307

Y
yandex: 217
yields: 84, 222, 246, 259,

283, 285-286, 288, 330

	Cover
	FM
	Table of Contents
	Preface
	Section 1: Azure Machine Learning
	Chapter 1: Building an end-to-end machine learning pipeline in Azure
	Performing descriptive data exploration
	Moving data to the cloud
	Understanding missing values
	Visualizing data distributions
	Finding correlated dimensions
	Measuring feature and target dependencies for regression
	Visualizing feature and label dependency for classification

	Exploring common techniques for data preparation
	Labeling the training data
	Normalization and transformation in machine learning
	Encoding categorical variables
	A feature engineering example using time-series data
	Using NLP to extract complex features from text

	Choosing the right ML model to train data
	Choosing an error metric
	The training and testing split
	Achieving great performance using tree-based ensemble models
	Modeling large and complex data using deep learning techniques

	Optimization techniques
	Hyperparameter optimization
	Model stacking
	Azure Automated Machine Learning

	Deploying and operating models
	Batch scoring using pipelines
	Real-time scoring using a container-based web service
	Tracking model performance, telemetry, and data skew

	Summary

	Chapter 2: Choosing a machine learning service in Azure
	Demystifying the different Azure services for ML
	Choosing an Azure service for ML
	Choosing a compute target for Azure Machine Learning

	Azure Cognitive Services and Custom Vision
	Azure Cognitive Services
	Custom Vision—customizing the Cognitive Services API

	Azure Machine Learning with GUIs
	Azure Machine Learning designer
	Azure Automated Machine Learning
	Microsoft Power BI

	Azure Machine Learning workspace
	Organizing experiments and models in Azure Machine Learning
	Deployments through Azure Machine Learning

	Summary

	Section 2: Experimentation and Data Preparation
	Chapter 3: Data experimentation and visualization using Azure
	Preparing your Azure Machine Learning workspace
	Setting up the ML Service workspace
	Running a simple experiment with Azure Machine Learning
	Logging metrics and tracking results
	Scheduling and running scripts
	Adding cloud compute to the workspace

	Visualizing high-dimensional data
	Tracking figures in experiments in Azure Machine Learning
	Unsupervised dimensionality reduction with PCA
	Using LDA for supervised projections
	Non-linear dimension reduction with t-SNE
	Generalizing t-SNE with UMAP

	Summary

	Chapter 4: ETL, data preparation, and feature extraction
	Managing data and datasets in the cloud
	Getting data into the cloud
	Managing data in Azure Machine Learning
	Exploring data registered in Azure Machine Learning

	Preprocessing and feature engineering with Azure Machine Learning DataPrep
	Parsing different data formats
	Building a data transformation pipeline in Azure Machine Learning

	Summary

	Chapter 5: Azure Machine Learning pipelines
	Benefits of pipelines for ML workflows
	Why build pipelines?
	What are Azure Machine Learning pipelines?

	Building and publishing an ML pipeline
	Creating a simple pipeline
	Connecting data inputs and outputs between steps
	Publishing, triggering, and scheduling a pipeline
	Parallelizing steps to speed up large pipelines
	Reusing pipeline steps through modularization

	Integrating pipelines with other Azure services
	Building pipelines with the Azure Machine Learning designer
	Azure Machine Learning pipelines in Azure Data Factory
	Azure Pipelines for CI/CD

	Summary

	Chapter 6: Advanced feature extraction with NLP
	Understanding categorical data
	Comparing textual, categorical, and ordinal data
	Transforming categories into numeric values
	Categories versus text

	Building a simple bag-of-words model
	A naive bag-of-words model using counting
	Tokenization – turning a string into a list of words
	Stemming – rule-based removal of affixes
	Lemmatization – dictionary-based word normalization
	A bag-of-words model in scikit-learn

	Leveraging term importance and semantics
	Generalizing words using n-grams and skip- grams
	Reducing word dictionary size using SVD
	Measuring the importance of words using tf-idf
	Extracting semantics using word embeddings

	Implementing end-to-end language models
	End-to-end learning of token sequences
	State-of-the-art sequence-to-sequence models
	Text analytics using Azure Cognitive Services

	Summary

	Section 3: Training Machine Learning Models
	Chapter 7: Building ML models using Azure Machine Learning
	Working with tree-based ensemble classifiers
	Understanding a simple decision tree
	Combining classifiers with bagging
	Optimizing classifiers with boosting rounds

	Training an ensemble classifier model using LightGBM
	LightGBM in a nutshell
	Preparing the data
	Setting up the compute cluster and execution environment
	Building a LightGBM classifier
	Scheduling the training script on the Azure Machine Learning cluster

	Summary

	Chapter 8: Training deep neural networks on Azure
	Introduction to deep learning
	Why DL?
	From neural networks to DL
	Comparing classical ML and DL

	Training a CNN for image classification
	Training a CNN from scratch in your notebook
	Generating more input data using augmentation
	Moving training to a GPU cluster using Azure Machine Learning compute
	Improving your performance through transfer learning

	Summary

	Chapter 9: Hyperparameter tuning and Automated Machine Learning
	Hyperparameter tuning to find the optimal parameters
	Sampling all possible parameter combinations using grid search
	Trying random combinations using random search
	Converging faster using early termination
	Optimizing parameter choices using Bayesian optimization

	Finding the optimal model with Azure Automated Machine Learning
	Advantages and benefits of Azure Automated Machine Learning
	A classification example

	Summary

	Chapter 10: Distributed machine learning on Azure
	Exploring methods for distributed ML
	Training independent models on small data in parallel
	Training a model ensemble on large datasets in parallel
	Fundamental building blocks for distributed ML
	Speeding up DL with data-parallel training
	Training large models with model-parallel training

	Using distributed ML in Azure
	Horovod—a distributed DL training framework
	Implementing the HorovodRunner API for a Spark job
	Running Horovod on Azure Machine Learning compute

	Summary

	Chapter 11: Building a recommendation engine in Azure
	Introduction to recommender engines
	Content-based recommendations
	Measuring similarity between items
	Feature engineering for content-based recommenders
	Content-based recommendations using gradient boosted trees

	Collaborative filtering—a rating-based recommendation engine
	What is a rating? Explicit feedback as opposed to implicit feedback
	Predicting the missing ratings to make a recommendation
	Scalable recommendations using ALS factorization

	Combining content and ratings in hybrid recommendation engines
	Building a state-of-the-art recommender using the Matchbox Recommender

	Automatic optimization through reinforcement learning
	An example using Azure Personalizer in Python

	Summary

	Section 4: Optimization and Deployment of Machine Learning Models
	Chapter 12: Deploying and operating machine learning models
	Deploying ML models in Azure
	Understanding the components of an ML model
	Registering your models in a model registry
	Customizing your deployment environment
	Choosing a deployment target in Azure

	Building a real-time scoring service
	Implementing a batch scoring pipeline
	Inference optimizations and alternative deployment targets
	Profiling models for optimal resource configuration
	Portable scoring through the ONNX runtime
	Fast inference using FPGAs in Azure
	Alternative deployment targets

	Monitoring Azure Machine Learning deployments
	Collecting logs and infrastructure metrics
	Tracking telemetry and application metrics

	Summary

	Chapter 13: MLOps—DevOps for machine learning
	Ensuring reproducible builds and deployments
	Version-controlling your code
	Registering snapshots of your data
	Tracking your model metadata and artifacts
	Scripting your environments and deployments

	Validating your code, data, and models
	Rethinking unit testing for data quality
	Integration testing for ML
	End-to-end testing using Azure Machine Learning
	Continuous profiling of your model

	Summary

	Chapter 14: What's next?
	Understanding the importance of data
	The future of ML is automated
	Change is the only constant – preparing for change
	Focusing first on infrastructure and monitoring
	Controlled rollouts and A/B testing
	Summary

	Index

