

Group Policy on Linux
David Mulder

Group Policy on Linux
This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. The print edition of
this book is sold at-cost, in accordance with the license.

You can obtain the free ebook edition of this book and the sources from
https://github.com/dmulder/group-policy-book/releases.

http://creativecommons.org/licenses/by-nc-sa/4.0/
https://github.com/dmulder/group-policy-book/releases

1 Preface
This book introduces the user to opensource tools for managing Linux clients
via Samba’s Group Policy.

Samba is a popular opensource tool that allows Linux systems to integrate
with Windows environments, particularly when it comes to file and printer
sharing. One of the key features of Samba is its ability to apply Group Policy
objects (GPOs) to Linux clients.

Group Policy is a feature of the Microsoft Windows operating system that
allows administrators to centrally manage system and user settings. With
Samba, Linux users can take advantage of this powerful tool to centrally
manage and configure their systems.

In this book, we will introduce the reader to the basics of Group Policy and
show how to use Samba to apply GPOs to Linux clients. We will cover topics
such as configuring Samba’s Group Policy Server Side Extensions (SSE),
troubleshooting common issues with Client Side Extensions (CSEs), and how
to create and apply your own Group Policy. By the end of this book, the
reader should have a good understanding of how to use Group Policy with
Linux systems and be able to confidently manage their Linux clients using
this powerful tool.

2 About the Author
David Mulder is a developer known for his work on integrating Group Policy
support into Samba, which has allowed Linux users to take advantage of this
powerful feature to centrally manage their systems. Mulder’s work on
Samba’s Group Policy support began in 2016, when he began reviewing code
from Luke Morrison, an intern who had submitted his implementation of
Group Policy to the Samba project. Mulder previously contributed to the
Vintela Group Policy project beginning in 2012, and brought that expertise to
the Samba team.

Some of the text in this book, as well as the images, were generated using
OpenAI’s GPT-3 model, which is a state-of-the-art language processing
system. OpenAI’s GPT-3 technology is an example of the incredible
advances that have been made in the field of AI and natural language
processing. This technology has the potential to revolutionize many areas of
research and industry, and its use in generating text and images for this book
is a testament to its capabilities.

3 Introduction

Starting with version 4.14, Samba has included support for applying Group
Policy objects (GPOs) to Linux clients, making it possible to use Group
Policy to centrally manage and configure Linux systems in a Windows
environment.

Samba’s Group Policy support is designed to be similar to what is offered by
proprietary tools, such as Vintela’s and Centrify’s Group Policy solutions.
This allows Linux users to take advantage of the same powerful Group Policy
features that are available to Windows users, without having to rely on
proprietary tools.

Overall, Samba’s Group Policy support makes it possible for Linux users to
manage and configure their systems using the same powerful Group Policy
features that are available to Windows users. This allows Linux users to
easily integrate their systems with Windows environments and take
advantage of Group Policy’s central management capabilities.

3.1 What’s the difference between Group Policy and
a Group Policy Object?

The key difference between Group Policy and a Group Policy Object (GPO)
is that Group Policy is the overall concept and framework for managing and
configuring settings on computers in an environment, while a GPO is a
specific collection of settings that are applied to a group of machines or users.

Group Policy allows administrators to define and manage the settings that are
applied to computers and users in a domain. This includes settings for various

aspects of the operating system, such as security policies, user accounts, and
network settings. Group Policy also includes the infrastructure and tools for
distributing and applying these settings to the appropriate computers and
users. You can think of Group Policy like a template for a work order.

A GPO, on the other hand, is a specific set of settings that are defined by an
administrator and applied to a group of computers or users. A GPO can be
thought of as a filled out copy of a work order that specifies the settings that
should be applied to the members of the group. These settings are stored in
the GPO and distributed to the appropriate computers and users by the Group
Policy infrastructure.

Server-side extensions (SSEs) are responsible for processing and managing
GPOs on the domain controller, while client-side extensions (CSEs) are
responsible for applying the settings in a GPO to the local system. Together,
these components work to manage and apply GPOs in an environment.

3.2 Server Side Extensions

The purpose of a Server Side Extension (SSE) is to process and manage
Group Policy objects (GPOs) on the domain controller (to fill out a work
order). In a Windows environment, this generally refers to some component
of the Group Policy Management Editor.

Figure 3.1: Group Policy Management Editor

In the case of Samba, SSEs also include the samba-tool gpo command,
which allows administrators to manage GPOs from the command line. This
command allows administrators to create, link, and modify GPOs.

> samba-tool gpo

Usage: samba-tool gpo <subcommand>

Group Policy Object (GPO) management.

Options:

 -h, --help show this help message and exit

Available subcommands:

 aclcheck - Check all GPOs have matching LDAP and DS

ACLs.

 admxload - Loads samba admx files to sysvol

 backup - Backup a GPO.

 create - Create an empty GPO.

 del - Delete a GPO.

 dellink - Delete GPO link from a container.

 fetch - Download a GPO.

 getinheritance - Get inheritance flag for a container.

 getlink - List GPO Links for a container.

 list - List GPOs for an account.

 listall - List all GPOs.

 listcontainers - List all linked containers for a GPO.

 manage - Manage Group Policy Objects

 restore - Restore a GPO to a new container.

 setinheritance - Set inheritance flag on a container.

 setlink - Add or update a GPO link to a container.

 show - Show information for a GPO.

> samba-tool gpo manage

Usage: samba-tool gpo manage <subcommand>

Manage Group Policy Objects

Options:

 -h, --help show this help message and exit

Available subcommands:

 access - Manage Host Access Group Policy Objects

 files - Manage Files Group Policy Objects

 issue - Manage Issue Group Policy Objects

 motd - Manage Message of the Day Group Policy Objects

 openssh - Manage OpenSSH Group Policy Objects

 scripts - Manage Scripts Group Policy Objects

 security - Manage Security Group Policy Objects

 smb_conf - Manage smb.conf Group Policy Objects

 sudoers - Manage Sudoers Group Policy Objects

 symlink - Manage symlink Group Policy Objects

When working with Linux clients, using samba-tool gpo manage to fill out
your GPO is generally the preferred method.

Overall, the purpose of an SSE is to manage and process GPOs on the
domain controller, enabling administrators to define and apply settings to the
appropriate computers and users in the domain. These extensions work
behind the scenes to ensure that GPOs are processed and managed correctly

on the domain controller.

3.2.1 Enabling Group Policy Server Side Extensions on the
Server

In order to use the Samba Administrative Templates in the Group Policy
Management Console, you’ll need to install them first, using the command
sudo samba-tool gpo admxload -UAdministrator. See chapter 22 for
specifics on how to do this.

3.3 Client Side Extensions

In Group Policy vernacular, a Client Side Extension (CSE) is an encapsulated
module on a client machine intended to enforce a specific policy. The
responsibility of the CSE is to install that policy on the client and ensure it is
enforced. It’s also the responsibility of the CSE to remove the policy when
disabled by the server.

In Samba, a CSE looks like a single python file. Within that file, the CSE
inherits from one of several base classes provided by Samba which provide
settings from the server. This is discussed in more detail in chapter 20.2.

3.3.1 Enabling Group Policy Client Side Extensions on the
Linux Client

To enable Group Policy in Winbind, set the apply group policies global
smb.conf option to Yes. You can even deploy this setting from Group Policy
smb.conf options, then running the apply command manually the first time
with sudo samba-gpupate --force.

Policies are enforced at a random interval between 90 and 120 seconds.

Policies can be manually enforced at any time on a Linux domain member
using the samba-gpupdate --force command.

Winbind will enforce both machine policy (as of Samba 4.14) and user policy

(as of Samba 4.18).

If the Linux client is joined using SSSD, you can instead enforce the policy
using oddjob-gpupdate. The samba-gpupdate command from Samba must
also be installed.

Further details on how to configure Automatic Policy Refresh via Winbind
(23.2) and SSSD (23.3) can be found in chapter 23.

3.3.2 Resultant Set of Policy

A Resultant Set of Policy (RSoP) is a summary of the policies that will be
applied to a computer or user, or that have already been applied. The RSoP is
generated by the client-side extensions (CSEs) that are responsible for
applying Group Policy objects (GPOs) to the local system.

Each CSE is configured to return an RSoP for the policies that it manages.

The RSoP is generated by the CSEs before the GPOs are applied, allowing
administrators to see what policies will be applied to the system before they
are actually applied. This can be useful for troubleshooting or for verifying
that the correct policies are being applied. Once the GPOs are applied, the
CSEs will also generate an RSoP for the policies that have been applied.

To see the RSoP, run the command sudo samba-gpupdate --rsop for
Machine policy, or sudo samba-gpupdate --rsop --target=User -

U<username> to see User policy.

linux-h7xz:~ # samba-gpupdate --rsop

Resultant Set of Policy

Computer Policy

GPO: Default Domain Policy

==

 CSE: gp_sec_ext

 CSE: gp_sec_ext

 CSE: gp_scripts_ext

 CSE: gp_sudoers_ext

 Policy Type: Sudo Rights

 [tux ALL=(ALL) NOPASSWD: ALL]

 CSE: gp_smb_conf_ext

 Policy Type: smb.conf

 [apply group policies] = 1

 [client max protocol] = SMB2_02

 CSE: gp_msgs_ext

 Policy Type: /etc/motd

This message is distributed by Samba!

 Policy Type: /etc/issue

Samba Group Policy \s \r \l

==

3.4 Policies Introduced in this Book

In the upcoming chapters of this book, we will be discussing a variety of
Group Policies that can be used to manage and configure systems in a Linux
environment. These policies cover a wide range of settings, including
security policies, user account settings, preferences, and many others.

This section will provide a brief overview of those policies. By the end of this
book, the reader should have a good understanding of how to use these
policies to manage and configure Linux systems.

3.4.1 smb.conf Policies

These policies distribute smb.conf global options to the client. These are
found in the Group Policy Management Editor (GPME) under Computer
Configuration > Policies > Administrative Templates > Samba >

smb.conf. This policy is unable to apply idmap policies.

3.4.2 Password and Kerberos Policies

Password and Kerberos policies are found in the GPME under Computer
Configuration > Policies > OS Settings > Security Settings >

Account Policy. These policies are only applicable to Samba Active
Directory Domain Controllers.

3.4.3 Script Policies

Script policies create cron jobs on client machines which execute the
specified commands. These are found in the GPME under Computer

Configuration > Policies > Administrative Templates > Samba >

Unix Settings > Scripts.

3.4.3.1 Centrify Crontab Entries

Samba provides an extension which adds compatibility with Centrify’s
Crontab Entries Group Policy. If you are currently using Centrify Group
Policy to distribute Crontab entry policies, these will automatically be applied
by samba-gpupdate.

3.4.4 Startup Script Policies

Startup script policies allow you to upload the script that will be executed to
the SYSVOL, as well as scheduling the command to run at startup. These
scripts can be set using the samba-tool gpo manage scripts startup
command.

3.4.5 Files Policy

The Files policy deploys files to client machines. These files are uploaded to
the SYSVOL via the samba-tool gpo manage files command.

3.4.6 Symlink Policies

The symlink policy creates symbolic links on client machines. This policy is
set via the samba-tool gpo manage symlink command. This policy is
compatible with Vintela’s Symlink Group Policy.

3.4.7 Sudoers Policies

Sudoers policies add sudo rules to client machines. These policies can be
managed in the GPME under Computer Configuration > Policies >
Administrative Templates > Samba > Unix Settings > Sudo Rights.

3.4.7.1 VGP Sudoers Policies

Another Sudoers extension is available for compatibility with Vintela’s
Sudoers Group Policy. The policy for this extension can be modified using
the samba-tool gpo manage sudo command.

3.4.7.2 Centrify Sudoers Policies

A third Sudoers extension is available to provide compatibility with
Centrify’s Sudoers Group Policy. If you are currently using Centrify Group
Policy to distribute Sudoers policies, these will automatically be applied by
samba-gpupdate.

Samba Sudoers, VGP Sudoers, and Centrify Sudoers policies can be safely
used in conjunction with one another, since these policies are non-
overlapping.

3.4.8 Message Policies

Message policies set the contents of the /etc/motd and /etc/issue files on client
machines. These policies can be managed in the GPME under Computer
Configuration > Policies > Administrative Templates > Samba >

Unix Settings > Messages.

3.4.8.1 VGP Message Policies

Other VGP Message extensions are available for compatibility with Vintela’s
MOTD and Issue Group Policies. The policies for these extensions can be
modified using the samba-tool gpo manage motd and samba-tool gpo

manage issue commands.

Beware that applying both the Samba and VGP message policies will cause
unpredictable behavior, since both policies will apply and will overwrite one
another.

3.4.9 PAM Access Policies

PAM Access policies set access rules within /etc/security/access.d.
These policies are set using the samba-tool gpo manage access command.
This policy is compatible with Vintela’s Access Group Policy.

3.4.10 Certificate Auto Enrollment

Certificate Auto Enrollment allows devices to enroll for certificates from
Active Directory Certificate Services. Certificate Auto Enrollment is
available in Samba 4.16 and above.

3.4.11 Firefox Policy

Firefox policies can be administered using the Mozilla policy templates
provided by Mozilla.

3.4.12 Chromium/Chrome Policy

Chromium and Google Chrome policies can be administered using the
Chrome policy templates provided by Google.

3.4.13 GNOME Settings

GNOME Settings policies are found in the GPME under Computer

Configuration > Policies > Administrative Templates > Samba >

GNOME. These policies manage some GNOME user settings, as described in
the GNOME system admin guide, such as the compose key, screen dimming,
online account management, extensions, and the ability to disable printing,
file saving, command line access, fingerprint logon, logout, user switching,
and repartitioning. There is also a general method for disabling any specific
GNOME lockdown value.

3.4.14 OpenSSH Policy

OpenSSH policy applies settings to /etc/ssh/sshd_config.d. These
policies can be set using the samba-tool gpo manage openssh command.
These policies are compatible with Vintela’s OpenSSH Group Policy.

3.4.15 Firewalld Policy

Firewalld policy applies firewall rules using the firewall-cmd command.
These policies can be found in the GPME under Computer Configuration >
Policies > Administrative Templates > Samba > Unix Settings >

Firewalld.

4 Managing Group Policies

Before diving into specific Group Policies, let’s review the basics of
managing Group Policy.

A Windows Active Directory Administrator should know that Group Policies
are managed via the Group Policy Management Console (GPMC).
Unfortunately there isn’t a similar tool for Samba Active Directory
Administrators. The Samba project does provide the comprehensive samba-
tool gpo command, which supplants much of the GPMC.

There are instances where Samba’s Group Policy can only be managed via
the GPMC, with no samba-tool gpo alternative. These cases will be
highlighted in the text.

4.1 Opening a Group Policy Object in the Group
Policy Management Console

To open the Default Domain Policy (for example) in the Group Policy
Management Console:

1. Open the Group Policy Management Console by going to Start >
Administrative Tools > Group Policy Management.

2. In the Group Policy Management Console, expand the Forest node, then
expand the Domains node.

3. Select the domain that contains the Default Domain Policy.

Figure 4.1: Group Policy Management Console

4. In the right pane, right-click on the Default Domain Policy and select
“Edit” from the context menu.

5. The Group Policy Management Editor window will open, allowing you
to view and edit the Default Domain Policy.

Figure 4.2: Default Domain Policy

Note: You will need to have the appropriate permissions to edit the Default
Domain Policy. If you do not have the necessary permissions, you will not be
able to edit the policy.

4.2 Creating a Group Policy Object

4.2.1 samba-tool

The samba-tool gpo create command is used to create a Group Policy
Object (GPO). To create a GPO using the samba-tool gpo create

command, you would use the following syntax:

Where GPO_NAME is the name of the GPO that you want to create. This name

samba-tool gpo create GPO_NAME

should be unique within the domain, as it will be used to identify the GPO
when it is linked to a domain or organizational unit (OU).

Once the GPO has been created, you can use the samba-tool gpo setlink
command to add or update a GPO link to a container. The syntax for this
command is:

Where CONTAINER_DN is the distinguished name of the container from which
you want to create the GPO link, and GPO_NAME is the name of the GPO you
want to link.

4.2.2 GPMC

To create a Group Policy object (GPO) using the Group Policy Management
Console (GPMC):

1. Open the GPMC by going to Start > Administrative Tools > Group
Policy Management.

2. In the GPMC, expand the Domains node in the tree, and then expand the
domain where you want to create the GPO.

3. Right-click on the domain, or the container where you’d like the GPO
created and linked, and select Create a GPO in this domain, and
Link it here....

samba-tool gpo setlink CONTAINER_DN GPO_NAME

Figure 4.3: Create a GPO

4. In the New GPO dialog box, enter a name for the GPO and click on the OK
button.

5. The new GPO will be created and will appear in the list of GPOs under
the Group Policy Objects node.

4.3 Deleting a Group Policy Object

4.3.1 samba-tool

To delete a Group Policy Object (GPO), you would use the samba-tool gpo
del command. The syntax for this command is:

samba-tool gpo del GPO_NAME

Where GPO_NAME is the name of the GPO you want to delete.

This command will delete the GPO from the server. Keep in mind that this
operation cannot be undone, so make sure you really want to delete the GPO
before running this command.

To delete a Group Policy Object (GPO) link from a container, you would use
the samba-tool gpo dellink command. The syntax for this command is:

Where CONTAINER_DN is the distinguished name of the container from which
you want to delete the GPO link, and GPO_NAME is the name of the GPO you
want to unlink.

4.3.2 GPMC

To delete a Group Policy object (GPO) using the Group Policy Management
Console (GPMC):

1. In the left pane of the GPMC, expand the forest and domain that contain
the GPO you want to delete.

2. In the left pane, select the Group Policy Objects container. This will
display a list of GPOs in the right pane.

3. In the right pane, right-click the GPO you want to delete and select
“Delete.”

4. A warning message will appear, asking you to confirm that you want to
delete the GPO. Click “Yes” to delete the GPO.

4.4 Listing a Group Policy

To list the contents of a Group Policy Object (GPO), you would use the
samba-tool gpo list command. The syntax for this command is:

samba-tool gpo dellink CONTAINER_DN GPO_NAME

samba-tool gpo list GPO_NAME

Where GPO_NAME is the name of the GPO you want to list the contents of.

This command will list all of the settings and policies contained in the
specified GPO.

4.5 Modifying a Group Policy

The samba-tool gpo manage is used for modifying settings on a Group
Policy Object. See the individual chapters for each subcommand explanation.

Command Chapter
samba-tool gpo manage smb_conf 4
samba-tool gpo manage security 5
samba-tool gpo manage scripts startup 7
samba-tool gpo manage files 8
samba-tool gpo manage symlink 9
samba-tool gpo manage sudoers 10
samba-tool gpo manage issue 11
samba-tool gpo manage motd 11
samba-tool gpo manage access 12
samba-tool gpo manage openssh 17

Each of these subcommands has its own set of options and parameters that
can be used to specify the details of the operation. For more information on a
specific subcommand, you can consult the documentation for that
subcommand.

Additionally, the samba-tool gpo load and samba-tool gpo remove

commands (see section 21.1) may be used to modify any policy which is
loaded to the SYSVOL in a Registry.pol file. This applies to smb.conf
policies, Script Policies, Sudoers Policies, Message Policies, Certificate Auto
Enrollment Policy (advanced configuration only), Firefox Policy,
Chromium/Chrome Policy, GNOME Settings Policy, and Firewalld Policy.

5 smb.conf Policies

The purpose of the smb.conf policies is to be able to distribute smb.conf
settings to Linux clients. This policy only supports a physical smb.conf file,
and currently does not support smb.conf registry settings.

These policies are physically stored on the SYSVOL in the
MACHINE/Registry.pol file in the subdirectory of the Group Policy Object.
They are stored in registry format, and are difficult to modify manually. See
chapter 21 for details on how to manually modify this file.

5.1 Server Side Extension

The Server Side Extension for smb.conf policies is distributed using
Administrative Templates (ADMX). Refer to chapter 20.1 in section 20.1.1
for details about Administrative Templates.

Setting up the ADMX templates for this policy is described in chapter 22
section 22.1.

5.1.1 Managing smb.conf Policies via the GPME

After successfully installing the ADMX templates, open the Group Policy
Management Editor (GPME). For instructions on accessing the GPME, see
chapter 4 section 4.1. For this example, we’re going to enable the apply
group policies setting.

1. In the left pane of the GPME, navigate to Computer Configuration >
Policies > Administrative Templates > Samba > smb.conf.

Figure 5.1: smb.conf Server Side Extension (ADMX)

2. In the right pane, double-click the “apply group policies” policy.

3. In the “apply group policies” dialog box, click the Enabled option.

4. Check the box next to “apply group policies”.

5. Click OK to close the “Apply group policies” dialog box.

Figure 5.2: apply group policies Setting

Note: The apply group policies setting instructs Winbind to execute the
samba-gpupdate command on the Group Policy interval (every 90 to 120
minutes). This allows you to apply Group Policy updates to Samba clients
without having to log off and log back on.

There are many other settings available here, but notice that idmap policies
are not. That’s because idmap policies modify the setting name (not just the
value), so these couldn’t be included.

5.1.2 Managing smb.conf Policies via samba-tool

Setting an smb.conf Group Policy via samba-tool gpo manage smb_conf is
arguably much simpler.

Use the samba-tool gpo manage smb_conf set command, providing the
following arguments:

1. <gpo>: The name of the GPO that you want to modify.

2. <setting>: The name of the smb.conf setting that you want to set.

3. <value>: The value that you want to set for the specified setting.

For example, to set the apply gpo policies setting to yes in the GPO
named {31B2F340-016D-11D2-945F-00C04FB984F9}, you would use the
following command:

If you want to unset a policy, you can omit the <value> argument. For
example, to unset the apply gpo policies setting in the GPO named
{31B2F340-016D-11D2-945F-00C04FB984F9}, you would use the following
command:

This command does not require the ADMX templates to be installed, and also
does not suffer from the same limitation as the GPME for idmap policies.

5.2 Client Side Extension

The smb.conf Client Side Extension (CSE) directly modifies the default
smb.conf file. Any custom formatting or comments in the smb.conf file may
be overwritten. The CSE will open your existing smb.conf file, read in the
current settings, set the settings provided by the GPO, then write the file back
to disk. This CSE will only write global smb.conf options.

In the previous section, we enabled the apply group policies smb.conf
option. If we now go to our Linux client, and check the Resultant Set of
Policy, we see this:

samba-tool gpo manage smb_conf set \

 {31B2F340-016D-11D2-945F-00C04FB984F9} 'apply gpo policies' yes

samba-tool gpo manage smb_conf set \

 {31B2F340-016D-11D2-945F-00C04FB984F9} 'apply gpo policies'

> sudo /usr/sbin/samba-gpupdate --rsop

Resultant Set of Policy

Computer Policy

GPO: Default Domain Policy

===

 CSE: gp_smb_conf_ext

 Policy Type: smb.conf

 [apply group policies] = 1

===

If we now force the policy, we’ll see our setting gets applied to the default
smb.conf:

> sudo /usr/sbin/samba-gpupdate --force

> diff -u /etc/samba/smb.conf.BAK /etc/samba/smb.conf

--- /etc/samba/smb.conf.BAK

+++ /etc/samba/smb.conf

@@ -1,5 +1,6 @@

 # Global parameters

 [global]

+ apply group policies = Yes

 kerberos method = secrets and keytab

 logon drive = P:

 logon home = \\%L\%U\.9xprofile

If for whatever reason the policy did not apply, it is sometimes helpful to
look at the Group Policy Cache, which keeps track of applied policies.

> sudo tdbdump /var/lib/samba/gpo.tdb -k "TESTSYSDM$" \

| sed -r "s/\\\22/\"/g" | sed -r "s/\\\5C/\\\\/g" \

| xmllint --xpath "//gp_ext[@name='smb.conf']" - \

| xmllint --format -

<?xml version="1.0"?>

<gp_ext name="smb.conf">

 <attribute name="apply group policies">yes</attribute>

</gp_ext>

Where TESTSYSDM$ is the system name. You can see in our case Samba
has recorded applying the Group Policy Object, and that it set apply group
policies = yes in our smb.conf.

6 Password and Kerberos Policies

The purpose of these policies is to enforce password complexity and kerberos
rules on a Samba Active Directory Domain Controller (ADDC). When a
Linux client is not an ADDC, these policies are disabled and ignored
automatically.

These policies are physically stored on the SYSVOL in the
MACHINE/Microsoft */Windows NT/SecEdit/GptTmpl.inf** file in the
subdirectory of the Group Policy Object. They are stored in ini format, and
are easily modified manually using a text editor.

6.1 Server Side Extension

The Group Policy Management Editor (GPME) contains a built in Server
Side Extension for Password and Kerberos Policies. There is also a samba-
tool command to modify these policies.

6.1.1 Managing Password and Kerberos Policies via the GPME

Open the GPME and navigate to Computer Configuration > Policies >
Windows Settings > Security Settings > Account Policy.

6.1.1.1 Password Policies

The following password policies are applicable to a Samba ADDC:

Maximum password age
Minimum password age
Minimum password length
Password must meet complexity requirements

To set password policy settings using the Group Policy Management Editor
(GPME), follow these steps:

1. Open the Group Policy Management Editor (GPME). For instructions
on accessing the GPME, see chapter 4 section 4.1.

2. In the left pane of the GPME, navigate to Computer Configuration >
Policies > Windows Settings > Security Settings > Account Policy >
Password Policy.

3. In the right pane, double-click the “Maximum password age” policy.

4. In the “Maximum password age” dialog box, click the Enabled option
and enter 42 in the “Value” field.

5. Click OK to close the “Maximum password age” dialog box.

6. In the right pane, double-click the “Minimum password age” policy.

7. In the “Minimum password age” dialog box, click the Enabled option
and enter 1 in the “Value” field.

8. Click OK to close the “Minimum password age” dialog box.

9. In the right pane, double-click the “Minimum password length” policy.

10. In the “Minimum password length” dialog box, click the Enabled option
and enter 7 in the “Value” field.

11. Click OK to close the “Minimum password length” dialog box.

12. In the right pane, double-click the “Password must meet complexity
requirements” policy.

13. In the “Password must meet complexity requirements” dialog box, click
the Enabled option.

14. Click OK to close the “Password must meet complexity requirements”
dialog box.

Figure 6.1: Password Policies

6.1.1.2 Kerberos Policies

The following Kerberos policies are applicable to a Samba ADDC:

Maximum lifetime for service ticket
Maximum lifetime for user ticket
Maximum lifetime for user ticket renewal

To set Kerberos policy settings, follow these steps:

1. In the left pane of the GPME, navigate to Computer Configuration >
Policies > Windows Settings > Security Settings > Account

Policy > Kerberos Policy.

2. In the right pane, double-click the “Maximum lifetime for service ticket”
policy.

3. In the “Maximum lifetime for service ticket” dialog box, click the
Enabled option and enter 600 in the “Value” field.

4. Click OK to close the “Maximum lifetime for service ticket” dialog box.

5. In the right pane, double-click the “Maximum lifetime for user ticket”
policy.

6. In the “Maximum lifetime for user ticket” dialog box, click the Enabled
option and enter 10 in the “Value” field.

7. Click OK to close the “Maximum lifetime for user ticket” dialog box.

8. In the right pane, double-click the “Maximum lifetime for user ticket
renewal” policy.

9. In the “Maximum lifetime for user ticket renewal” dialog box, click the
Enabled option and enter 7 in the “Value” field.

10. Click OK to close the “Maximum lifetime for user ticket renewal”
dialog box.

Figure 6.2: Kerberos Policies

6.1.2 Managing Password and Kerberos Policies via samba-tool

The Password and Kerberos policies can also be set via samba-tool gpo
manage security set <gpo> <setting> <value>.

The command accepts the following parameters:

1. <gpo>: The name of the GPO that you want to modify.

2. <setting>: The name of the smb.conf setting that you want to set.

3. <value>: The value that you want to set for the specified setting.

The setting parameter must be one of the following:

Setting Description
MaxTicketAge Maximum lifetime for user ticket
MaxServiceAge Maximum lifetime for service ticket
MaxRenewAge Maximum lifetime for user ticket renewal
MinimumPasswordAge Minimum password age
MaximumPasswordAge Maximum password age
MinimumPasswordLength Minimum password length
PasswordComplexity Password must meet complexity requirements

6.2 Client Side Extension

The Password and Kerberos policies are separated into two Client Side
Extensions (CSE), gp_access_ext and gp_krb_ext. The Password policies
(internally known as System Access) apply password complexity rules
directly to the ADDC SamDB in the applicable LDAP attributes. The
Kerberos policies are stored in our Group Policy Cache, and are fetched
directly by the samba daemon when it loads.

In the previous section we saw that our Password and Kerberos policies were
already initialized to some defaults. If we now go to our Linux client, and
check the Resultant Set of Policy, we see this:

> sudo /usr/sbin/samba-gpupdate --rsop

Resultant Set of Policy

Computer Policy

GPO: Default Domain Policy

===

 CSE: gp_access_ext

 Policy Type: System Access

 [MinimumPasswordAge] = 1

 [MaximumPasswordAge] = 42

 [MinimumPasswordLength] = 7

 [PasswordComplexity] = 1

 CSE: gp_krb_ext

 Policy Type: Kerberos Policy

 [MaxTicketAge] = 10

 [MaxRenewAge] = 7

 [MaxServiceAge] = 600

===

Remember that these policies will only be listed if your Linux client is a
Samba ADDC.

Let’s now force a policy apply, and check that the settings have changed.

> sudo /usr/sbin/samba-gpupdate --force

> sudo tdbdump /var/lib/samba/gpo.tdb -k "TESTSYSDM$" \

 | sed -r "s/\\\22/\"/g" | sed -r "s/\\\5C/\\\\/g" \

 | xmllint --xpath "//gp_ext[@name='System Access' or

 @name='Kerberos Policy']" -

<gp_ext name="System Access">

 <attribute name="minPwdAge"/>

 <attribute name="maxPwdAge"/>

 <attribute name="minPwdLength"/>

 <attribute name="pwdProperties"/>

</gp_ext>

<gp_ext name="Kerberos Policy">

 <attribute name="kdc:user_ticket_lifetime"/>

 <attribute name="kdc:renewal_lifetime"/>

 <attribute name="kdc:service_ticket_lifetime"/>

</gp_ext>

> sudo tdbdump /var/lib/samba/gpo.tdb \

 -k 'kdc:user_ticket_lifetime'; echo

10

> sudo tdbdump /var/lib/samba/gpo.tdb \

 -k 'kdc:service_ticket_lifetime'; echo

10

> sudo tdbdump /var/lib/samba/gpo.tdb \

 -k 'kdc:renewal_lifetime'; echo

168

You can see the Kerberos policies are all stored in their own keys in the
Group Policy Cache (/var/lib/samba/gpo.tdb), and they are all stored in
hours. On the SYSVOL, they are actually stored in hours, minutes, and days,
respectively. The reason these are all stored in hours on the system is that the

samba daemon expects these attributes in hours.

If we check the contents of the GptTmpl.inf and do some conversion, we can
confirm these are correct.

It also helps to know how these Kerberos policies map to the samba daemon
settings.

Kerberos.Policy Samba.Setting Conversion
MaxTicketAge kdc:user_ticket_lifetime None
MaxServiceAge kdc:service_ticket_lifetime Minutes to Hours
MaxRenewAge kdc:renewal_lifetime Days to Hours

While the Kerberos policies have been stored to the Group Policy Log as
expected, let’s next verify that the Password policies have been applied using
the following ldapsearch.

> ldapsearch -H ldap://lizardo.suse.de -x -W \

 -D "Administrator@lizardo.suse.de" \

 -b DC=lizardo,DC=suse,DC=de \

 -s base minPwdAge maxPwdAge minPwdLength pwdProperties

lizardo.suse.de

dn: DC=lizardo,DC=suse,DC=de

maxPwdAge: -36288000000000

minPwdAge: -864000000000

minPwdLength: 7

pwdProperties: 1

[Kerberos Policy]

MaxTicketAge = 10

MaxServiceAge = 600

MaxRenewAge = 7

>>> from samba.gp.gp_sec_ext import mins_to_hours, days_to_hours

>>> MaxTicketAge = 10

>>> MaxServiceAge = 600

>>> MaxRenewAge = 7

>>> mins_to_hours(MaxServiceAge)

'10'

>>> days_to_hours(MaxRenewAge)

'168'

We can confirm these were set correctly by checking the contents of the
GptTmpl.inf, plus doing some type conversion.

Finally, here is how these policies map.

Password.Policy LDAP.Attribute Conversion
MinimumPasswordAge minPwdAge Days to NTTIME
MaximumPasswordAge maxPwdAge Days to NTTIME
MinimumPasswordLength minPwdLength None
PasswordComplexity pwdProperties None

[System Access]

MinimumPasswordAge = 1

MaximumPasswordAge = 42

MinimumPasswordLength = 7

PasswordComplexity = 1

>>> from samba.gp.gp_sec_ext import days2rel_nttime

>>> MinimumPasswordAge = 1

>>> MaximumPasswordAge = 42

>>> MinimumPasswordLength = 7

>>> PasswordComplexity = 1

>>> days2rel_nttime(MaximumPasswordAge)

'-36288000000000'

>>> days2rel_nttime(MinimumPasswordAge)

'-864000000000'

7 Script Policies

The purpose of this policy is to schedule cron jobs on a Linux client. Both
Machine and User policy is supported. This policy does not upload a script
for execution, it only schedules an existing script to run. To first load a script
onto the client, see the Files Policy in chapter 9.

This policy is physically stored on the SYSVOL in the
MACHINE/Registry.pol and USER/Registry.pol files within the
subdirectory of the Group Policy Object. It is stored in registry format. See
chapter 21 for details on how to manually modify this file.

7.1 Server Side Extension

The Server Side Extension for smb.conf policies is distributed using
Administrative Templates (ADMX). Refer to chapter 20.1 in section 20.1.1
for details about Administrative Templates.

Setting up the ADMX templates for this policy is described in chapter 22
section 22.1.

7.1.1 Managing Machine Scripts Policies via the GPME

As an example, let’s create a simple cron job which echo’s “hello world”
once every day.

1. Open the Group Policy Management Editor (GPME). For instructions
on accessing the GPME, see chapter 4 section 4.1.

2. In the left pane of the GPME, navigate to Computer Configuration >
Policies > Administrative Templates > Samba > Unix Settings

> Scripts.

Figure 7.1: Scripts Server Side Extension (ADMX)

3. In the right pane, double-click the “Daily” policy.

4. In the “Daily” dialog box, click the Enabled option and then click the
Show button.

5. In the “Show Contents” dialog box, type the following script in the
“Value” field:

echo "hello world"

Figure 7.2: Script Example

6. Click OK to close the “Show Contents” dialog box, and then click OK
again to close the “Daily” dialog box.

7.1.2 Managing User Scripts Policies via the GPME

Next we’ll create a user script that echo’s the text “Don’t do that Dave” every
hour.

1. In the left pane of the GPME, navigate to User Configuration >
Policies > Administrative Templates > Samba > Unix Settings

> Scripts.

2. In the right pane, double-click the “Hourly” policy.

3. In the “Hourly” dialog box, click the Enabled option and then click the
Show button.

4. In the “Show Contents” dialog box, type the following script in the
“Value” field:

Figure 7.3: User Script Example

5. Click OK to close the “Show Contents” dialog box, and then click OK
again to close the “Hourly” dialog box.

The quote “Don’t do that Dave” is a line spoken by the character HAL 9000
in the science fiction film “2001: A Space Odyssey.” HAL is a sentient
computer that controls the systems of a spacecraft, and the quote is spoken in
a scene where HAL is attempting to prevent one of the astronauts from
disconnecting its memory.

echo "Don't do that Dave"

7.2 Client Side Extension

The Scripts Client Side Extension (CSE) creates cron jobs on the Linux
client. For Machine policy, these jobs are installed in a file within the
/etc/cron.daily, /etc/cron.monthly, /etc/cron.weekly and
/etc/cron.hourly directories. For User policy, the user’s crontab file is
directly modified.

In the previous section we created two test Script policies. If we now go to
our Linux client, and check the Resultant Set of Policy, we see this:

> sudo /usr/sbin/samba-gpupdate --rsop

Resultant Set of Policy

Computer Policy

GPO: Default Domain Policy

===

 CSE: gp_scripts_ext

 Policy Type: Daily Scripts

 [echo hello world]

 CSE: gp_centrify_crontab_ext

 Policy Type: Centrify/CrontabEntries

 [@daily echo hello world from Centrify]

===

> sudo /usr/sbin/samba-gpupdate --target=User -U tux --rsop

Resultant Set of Policy

User Policy

GPO: Default Domain Policy

===

 CSE: gp_user_scripts_ext

 Policy Type: Hourly Scripts

 [echo Don't do that Dave]

 CSE: gp_user_centrify_crontab_ext

 Policy Type: Centrify/CrontabEntries

 [@hourly echo Don't do that Dave from Centrify]

===

In addition to the expected scripts that we added previously, you’ll notice
there are 2 additional entries. The gp_centrify_crontab_ext and
gp_user_centrify_crontab_ext CSEs parse policies provided by a Centrify
Server Side Extension. These weren’t introduced previously in the chapter
because they are a proprietary solution not provided by Samba. Samba
provides a CSE to apply these for compatability reasons, but does not provide
a SSE to set them. These CSEs are provided to assist in migration from
proprietary technologies. We won’t discuss these any further.

Let’s now force an apply, and verify that the cron jobs are scheduled.

> sudo /usr/sbin/samba-gpupdate --force

> sudo tdbdump /var/lib/samba/gpo.tdb -k "TESTSYSDM$" \

 | sed -r "s/\\\22/\"/g" | sed -r "s/\\\5C/\\\\/g" \

 | xmllint --xpath "//gp_ext[@name='Unix Settings/Scripts']" - \

 | xmllint --format -

<?xml version="1.0"?>

<gp_ext name="Unix Settings/Scripts">

 <attribute name="Software\Policies\Samba\Unix

 Settings\Daily Scripts:ZWNobyBoZWxsbyB3b3JsZA==">

 /etc/cron.daily/gp_m94kdru9

 </attribute>

</gp_ext>

> sudo /usr/sbin/samba-gpupdate --target=User -U tux --force

> sudo tdbdump /var/lib/samba/gpo.tdb -k "LIZARDO\\tux" \

 | sed -r "s/\\\22/\"/g" | sed -r "s/\\\5C/\\\\/g" \

 | xmllint --xpath "//gp_ext[@name='Unix Settings/Scripts']" - \

 | xmllint --format -

<?xml version="1.0"?>

<gp_ext name="Unix Settings/Scripts">

 <attribute name="Software\Policies\Samba\Unix

 Settings\Hourly Scripts:94d6...e415">

 @hourly echo Don't do that Dave

 </attribute>

</gp_ext>

First we see that the machine policy created the script /etc/cron.daily/
gp_m94kdru9. Let’s take a look at the contents.

Next we notice that the user policy created the entry @hourly echo Don't do
that Dave. If we inspect the crontab of the user tux, we see the entry.

> sudo crontab -l -u LIZARDO\\tux

autogenerated by samba

#

This file is generated by the gp_scripts_ext Group Policy

Client Side Extension. To modify the contents of this file,

modify the appropriate Group Policy objects which apply

to this machine. DO NOT MODIFY THIS FILE DIRECTLY.

#

@hourly echo Don't do that Dave

autogenerated by samba

> sudo cat /etc/cron.daily/gp_m94kdru9

#!/bin/sh

autogenerated by samba

#

This file is generated by the gp_scripts_ext Group Policy

Client Side Extension. To modify the contents of this file,

modify the appropriate Group Policy objects which apply

to this machine. DO NOT MODIFY THIS FILE DIRECTLY.

#

echo hello world

8 Startup Script Policies

Startup scripts earn themselves a chapter independant of the Script Polices
chapter because they are so thoroughly different. The Startup Scripts Policy
started as a compatability layer for Vintela’s Startup Scripts, but became the
defacto standard for Samba also. This policy has no Server Side Extension in
the Group Policy Management Editor (GPME), but only provides a samba-
tool command for setting the policy. A nice advantage to using this policy is
that when using the samba-tool gpo manage command to set the policy, it
automatically uploads the script file you specify to the SYSVOL.

This policy is physically stored on the SYSVOL in the MACHINE/VGP
/VTLA/Unix/Scripts/Startup/manifest.xml file in the subdirectory of the
Group Policy Object. They are stored in an xml format, and are easily
modified manually using a text editor.

8.1 Server Side Extension

Startup Script Policies have no GPME Server Side Extension (SSE), so this
policy may only be administered using samba-tool gpo manage scripts
startup. This is because this SSE is stored on the SYSVOL as an xml file,
not in the Registry.pol from an ADMX template.

8.1.1 Managing Startup Script Policies via samba-tool

The Startup Scripts samba-tool command has 3 subcommands; add, list, and
remove.

> samba-tool gpo manage scripts startup --help

Usage: samba-tool gpo manage scripts startup <subcommand>

Manage Startup Scripts Group Policy Objects

Options:

 -h, --help show this help message and exit

Available subcommands:

 add - Adds VGP Startup Script Group Policy to the sysvol

 list - List VGP Startup Script Group Policy from the sysvol

 remove - Removes VGP Startup Script Group Policy from the

sysvol

To add a new Startup Script policy to the SYSVOL, call the samba-tool gpo
manage scripts startup add command.

The samba-tool gpo manage scripts startup add command is used to
add a startup script policy to the SYSVOL. The command takes a Group
Policy Object (GPO) identifier and a script file as arguments, as well as
optional arguments for script arguments, and the user to run the script as.

When adding a script, you pass the relative path to an existing script file. This
script will be uploaded to the SYSVOL and made available to clients for
execution. You can also provide an optional set of arguments that will be
passed to the script when it is executed. These arguments are parsed as a
single argument to the command, so they must be wrapped in quotes and all
dashes (‘-’) must be escaped. There is also an optional argument run_as to
instruct the client to run the script as a specific user. The optional --run-once
parameter can instruct the script to execute only once, on the next startup, and
not again.

Let’s add a simple test script now which echos a message, and takes no
arguments. By default this command will run as root.

> cat test_script.sh

#!/bin/sh

echo Something is happening here at startup

> samba-tool gpo manage scripts startup add \

samba-tool gpo manage scripts startup add <gpo> <script> [args]

 [run_as]

 {31B2F340-016D-11D2-945F-00C04FB984F9} test_script.sh \

 -UAdministrator

> samba-tool gpo manage scripts startup list \

 {31B2F340-016D-11D2-945F-00C04FB984F9} -UAdministrator

@reboot root \\lizardo.suse.de\Policies\

 {31B2F340-016D-11D2-945F-00C04FB984F9}\MACHINE\VGP\VTLA\Unix\

 Scripts\Startup\test_script.sh

Notice that the path to the script is now pointing to an uploaded copy on the
SYSVOL.

If we mount the SYSVOL, we can take a look at the xml file created by the
policy.

> sudo mount.cifs \\\\lizardo.suse.de\\SYSVOL /mnt/ \

 -ouser=Administrator

> cat /mnt/lizardo.suse.de/Policies/

 {31B2F340-016D-11D2-945F-00C04FB984F9}/MACHINE/VGP/VTLA/Unix/

 Scripts/Startup/manifest.xml | xmllint --format -

<?xml version="1.0" encoding="UTF-8"?>

<vgppolicy>

 <policysetting>

 <version>1</version>

 <name>Unix Scripts</name>

 <description>

 Represents Unix scripts to run on Group Policy clients

 </description>

 <data>

 <listelement>

 <script>test_script.sh</script>

 <hash>3F1F0449B3070AD113B2878C751C4887</hash>

 </listelement>

 </data>

 </policysetting>

</vgppolicy>

If you wanted to remove this policy later, we would issue the samba-tool
gpo manage scripts startup remove command.

> samba-tool gpo manage scripts startup remove \

 {31B2F340-016D-11D2-945F-00C04FB984F9} \

 -UAdministrator test_script.sh

8.2 Client Side Extension

The Startup Scripts Client Side Extension (CSE) creates @reboot cron jobs
on the Linux client. Startup Scripts only apply for Machine policy.

We created a test script in the previous section. If we now list the Resultant
Set of Policy on the client, we see this:

> sudo /usr/sbin/samba-gpupdate --rsop

Resultant Set of Policy

Computer Policy

GPO: Default Domain Policy

===

 CSE: vgp_startup_scripts_ext

 Policy Type: VGP/Unix Settings/Startup Scripts

 [@reboot root /var/lib/samba/gpo_cache/LIZARDO.SUSE.DE/

 POLICIES/{31B2F340-016D-11D2-945F-

00C04FB984F9}/

 MACHINE/VGP/VTLA/UNIX/SCRIPTS/STARTUP/

 TEST_SCRIPT.SH]

===

If we now force the policy to apply, we’ll see our script is scheduled to
execute using a cron job.

> sudo /usr/sbin/samba-gpupdate --force

> sudo tdbdump /var/lib/samba/gpo.tdb -k "TESTSYSDM$" \

> | sed -r "s/\\\22/\"/g" | sed -r "s/\\\5C/\\\\/g" | \

 xmllint --xpath "//gp_ext[@name='VGP/Unix Settings/

 Startup Scripts']" - | \

 xmllint --format -

<?xml version="1.0"?>

<gp_ext name="VGP/Unix Settings/Startup Scripts">

 <attribute

 name="test_script.sh:3F1F0449B3070AD113B2878C751C4887:">

 /etc/cron.d/gp_vzldfcii

 </attribute>

</gp_ext>

> sudo cat /etc/cron.d/gp_vzldfcii

autogenerated by samba

#

This file is generated by the vgp_startup_scripts_ext Group

Policy Client Side Extension. To modify the contents of this

file, modify the appropriate Group Policy objects which apply

to this machine. DO NOT MODIFY THIS FILE DIRECTLY.

#

@reboot root /var/lib/samba/gpo_cache/LIZARDO.SUSE.DE/POLICIES/

 {31B2F340-016D-11D2-945F-00C04FB984F9}/MACHINE/VGP/VTLA/UNIX/

 SCRIPTS/STARTUP/TEST_SCRIPT.SH

You can see we found the location of our cron job by outputting the applied
policy from our Group Policy Cache. The cron job instructs the script to
execute as root on every reboot. Let’s also verify our script has been
deployed on the client.

> sudo cat /var/lib/samba/gpo_cache/LIZARDO.SUSE.DE/POLICIES/

 {31B2F340-016D-11D2-945F-00C04FB984F9}/MACHINE/VGP/VTLA/UNIX/

 SCRIPTS/STARTUP/TEST_SCRIPT.SH

#!/bin/sh

echo Something is happening here at startup

9 Files Policy

The Files Policy is useful to use in conjunction with the Scripts Policy, since
it can be used to copy scripts to your client machine. This policy is also
useful for deploying custom config files, etc. Like Startup Scripts, this policy
began as a compatability layer for Vintela’s Files policy, but has become a
Samba standard also. There is no Server Side Extension for the Group Policy
Management Editor (GPME), but must be modified using the samba-tool
gpo manage.

This policy is physically stored on the SYSVOL in the MACHINE/VGP/
VTLA/Unix/Files/manifest.xml file in the subdirectory of the Group Policy
Object. It is stored in an xml format, and is easily modified manually using a
text editor.

9.1 Server Side Extension

The Files Policy has no GPME Server Side Extension (SSE), so this policy
may only be administered using samba-tool gpo manage files. This is
because this SSE is stored on the SYSVOL as an xml file, not in the
Registry.pol from an ADMX template.

9.1.1 Managing the Files Policy via samba-tool

The Files samba-tool command has 3 subcommands; add, list, and remove.

> samba-tool gpo manage files --help

Usage: samba-tool gpo manage files <subcommand>

Manage Files Group Policy Objects

Options:

 -h, --help show this help message and exit

Available subcommands:

 add - Add VGP Files Group Policy to the sysvol

 list - List VGP Files Group Policy from the sysvol

 remove - Remove VGP Files Group Policy from the sysvol

To add a new File policy to the SYSVOL, call the samba-tool gpo manage
files add command.

For example:

The source argument refers to the source file on the host you are running the
command from. This source file will be uploaded to the SYSVOL. The
target argument is where the file should be deployed to on the client by the
CSE. The user, group and mode refer to the attributes which will be assigned
to the file when it is deployed to the client.

If, for example, we were to create a daily script (as described in chapter 7),
we could use this policy to deploy that script to the Linux client. Let’s now
create a policy for testing that deployment.

> cat test_script.sh

#!/bin/sh

echo Something is happening daily

> samba-tool gpo manage files add \

 {31B2F340-016D-11D2-945F-00C04FB984F9} ./test_script.sh \

 /usr/bin/test_script.sh root root 555 -UAdministrator

> samba-tool gpo manage files list \

 {31B2F340-016D-11D2-945F-00C04FB984F9} -UAdministrator

-r-xr-xr-x root root /usr/bin/test_script.sh ->

 test_script.sh

samba-tool gpo manage files add <gpo> <source> <target> <user>

 <group> <mode>

samba-tool gpo manage files add \

 {31B2F340-016D-11D2-945F-00C04FB984F9} ./source.txt \

 /usr/share/doc/target.txt root root 600

The output of the samba-tool gpo manage files list command now
shows that we have a policy set which will deploy a link to our test_script.sh
on the host. If we check the contents of the SYSVOL, we can see that our file
has been uploaded successfully.

> sudo mount.cifs \\\\lizardo.suse.de\\SYSVOL /mnt/ \

 -ouser=Administrator

> l /mnt/lizardo.suse.de/Policies/

 {31B2F340-016D-11D2-945F-00C04FB984F9}/MACHINE/VGP/VTLA/

 Unix/Files/

total 2

drwxr-xr-x 2 root root 0 Nov 15 09:55 ./

drwxr-xr-x 2 root root 0 Nov 15 09:55 ../

-rwxr-xr-x 1 root root 532 Nov 15 09:55 manifest.xml*

-rwxr-xr-x 1 root root 45 Nov 15 09:55 test_script.sh*

Let’s take a look at the contents of the manifest.xml which stores our policy.

> cat /mnt/lizardo.suse.de/Policies/

 {31B2F340-016D-11D2-945F-00C04FB984F9}/MACHINE/VGP/VTLA/

 Unix/Files/manifest.xml | xmllint --format -

<?xml version="1.0" encoding="UTF-8"?>

<vgppolicy>

 <policysetting>

 <version>1</version>

 <name>Files</name>

 <description>

 Represents file data to set/copy on clients

 </description>

 <data>

 <file_properties>

 <source>test_script.sh</source>

 <target>/usr/bin/test_script.sh</target>

 <user>root</user>

 <group>root</group>

 <permissions type="user">

 <read/>

 <execute/>

 </permissions>

 <permissions type="group">

 <read/>

 <execute/>

 </permissions>

 <permissions type="other">

 <read/>

 <execute/>

 </permissions>

 </file_properties>

 </data>

 </policysetting>

</vgppolicy>

Our source now refers to the file uploaded to the same directory as the
manifest.

If you wanted to remove this policy later, we would issue the samba-tool
gpo manage files remove command.

> samba-tool gpo manage files remove \

 {31B2F340-016D-11D2-945F-00C04FB984F9} /usr/bin/test_script.sh \

 -UAdministrator

Afterward the files list should be empty.

9.2 Client Side Extension

The Files Client Side Extension (CSE) copies the file from the SYSVOL to
the location specified in the target variable earlier. The Files Policy only
applies to Machine policy.

Let’s now list the Resultant Set of Policy on the Linux client to see the test
file we created previously.

> sudo /usr/sbin/samba-gpupdate --rsop

Resultant Set of Policy

Computer Policy

GPO: Default Domain Policy

===

 CSE: vgp_files_ext

 Policy Type: VGP/Unix Settings/Files

 [-r-xr-xr-x root root /usr/bin/test_script.sh ->

 test_script.sh]

===

Note that while the output appears to suggest we will be creating a symlink, it
is actually a hard copy of the file that is created. The syntax of the output is
simply for illustrative purposes.

If we now force the policy to apply, we’ll see our file is physically copied to
the requested location, along with the requested permissions.

> sudo /usr/sbin/samba-gpupdate --force

> sudo tdbdump /var/lib/samba/gpo.tdb -k "TESTSYSDM$" \

 | sed -r "s/\\\22/\"/g" | sed -r "s/\\\5C/\\\\/g" \

 | xmllint --xpath "//gp_ext[@name='VGP/Unix Settings/Files']" -

\

 | xmllint --format -

<gp_ext name="VGP/Unix Settings/Files">

 <attribute name="/usr/bin/test_script.sh">

 268d...9b39:root:root:365

 </attribute>

</gp_ext>

> l /usr/bin/test_script.sh

-r-xr-xr-x 1 root root 45 Nov 15 12:07 /usr/bin/test_script.sh*

> cat /usr/bin/test_script.sh

#!/bin/sh

echo Something is happening daily

The script is present where we requested. You can now refer to chapter 7
section 7.1.1 for details on how to schedule a job to execute this script via the
Scripts Policy.

10 Symlink Policies

The purpose of this policy is to create a symbolic link on a Linux client. Only
Machine policy is supported. This policy could be useful in conjunction with
the Files Policy found in chapter 9.

This policy is physically stored on the SYSVOL in the MACHINE/VGP
/VTLA/Unix/Symlink/manifest.xml file in the subdirectory of the Group
Policy Object. It is stored in an xml format, and is easily modified manually
using a text editor.

10.1 Server Side Extension

The Symlink Policy has no GPME Server Side Extension (SSE), so this
policy may only be administered using samba-tool gpo manage symlink.
This is because this SSE is stored on the SYSVOL as an xml file, not in the
Registry.pol from an ADMX template.

10.1.1 Managing the Symlink Policy via samba-tool

The Symlink samba-tool command has 3 subcommands; add, list, and
remove.

> samba-tool gpo manage symlink --help

Usage: samba-tool gpo manage symlink <subcommand>

Manage symlink Group Policy Objects

Options:

 -h, --help show this help message and exit

Available subcommands:

 add - Adds a VGP Symbolic Link Group Policy to the sysvol

 list - List VGP Symbolic Link Group Policy from the sysvol

 remove - Removes a VGP Symbolic Link Group Policy from the

 sysvol

To add a new Symlink policy to the SYSVOL, call the samba-tool gpo
manage symlink add command.

This command will add a policy instructing the client to create a symbolic
link pointing to source named target.

Let’s add a simple policy, which uploads a configuration file using the Files
Policy (see chapter 9), then symlinks that configuration file to somewhere
useful on the system.

> cat servlist.conf

N=Libera.Chat

L=1

E=UTF-8 (Unicode)

F=23

D=0

S=irc.libera.chat/6697

J=#samba-technical

> samba-tool gpo manage files add \

 {31B2F340-016D-11D2-945F-00C04FB984F9} servlist.conf \

 /usr/share/servlist.conf 'LIZARDO\tux' \

 'LIZARDO\domain users' 600 -UAdministrator

> samba-tool gpo manage files list \

 {31B2F340-016D-11D2-945F-00C04FB984F9} -UAdministrator

-rw------- LIZARDO\tux LIZARDO\domain users

 /usr/share/servlist.conf -> servlist.conf

> samba-tool gpo manage symlink add \

 {31B2F340-016D-11D2-945F-00C04FB984F9} /usr/share/servlist.conf

\

 /home/LIZARDO/tux/.config/hexchat/servlist.conf -UAdministrator

> samba-tool gpo manage symlink list \

 {31B2F340-016D-11D2-945F-00C04FB984F9} -UAdministrator

ln -s /usr/share/servlist.conf

 /home/LIZARDO/tux/.config/hexchat/servlist.conf

Here we are uploading a configuration file for hexchat, then symlinking it to

samba-tool gpo manage symlink add <gpo> <source> <target>

a user’s profile. The samba-tool gpo manage symlink list command
displays the link operations that will be performed on the client.

Later when we choose to remove this policy, we will do so with the samba-
tool gpo manage symlink remove command.

> samba-tool gpo manage symlink remove \

 {31B2F340-016D-11D2-945F-00C04FB984F9} /usr/share/servlist.conf

\

 /home/LIZARDO/tux/.config/hexchat/servlist.conf -UAdministrator

10.2 Client Side Extension

The Symlink Client Side Extension (CSE) creates a symlink between the
source and target. Startup Scripts only apply for Machine policy.

Let’s list the Resultant Set of Policy to view the symbolic link policy we
created in the previous section.

> sudo /usr/sbin/samba-gpupdate --rsop

Resultant Set of Policy

Computer Policy

GPO: Default Domain Policy

===

 CSE: vgp_symlink_ext

 Policy Type: VGP/Unix Settings/Symbolic Links

 [ln -s /usr/share/servlist.conf

 /home/LIZARDO/tux/.config/hexchat/servlist.conf]

 CSE: vgp_files_ext

 Policy Type: VGP/Unix Settings/Files

 [-rw------- LIZARDO\tux LIZARDO\domain users

 /usr/share/servlist.conf -> servlist.conf]

===

In addition to our Symlink policy, we also see the Files policy which we
added in conjunction with this.

Let’s now force our policy to apply and see how the CSE behaves.

> sudo /usr/sbin/samba-gpupdate --force

> sudo tdbdump /var/lib/samba/gpo.tdb -k "TESTSYSDM$" \

> | sed -r "s/\\\22/\"/g" | sed -r "s/\\\5C/\\\\/g" \

 | xmllint --xpath "//gp_ext[@name='VGP/Unix Settings/Files' or

 @name='VGP/Unix Settings/Symbolic

 Links']" - \

 | xmllint --format -

<gp_ext name="VGP/Unix Settings/Files">

 <attribute name="/usr/share/servlist.conf">

 d5b5...820c:LIZARDO\5Ctux:LIZARDO\5Cdomain users:384

 </attribute>

</gp_ext>

<gp_ext name="VGP/Unix Settings/Symbolic Links">

 <attribute name="/usr/share/servlist.conf:

 /home/LIZARDO/tux/.config/hexchat/servlist.conf">

 /home/LIZARDO/tux/.config/hexchat/servlist.conf

 </attribute>

</gp_ext>

> l /usr/share/servlist.conf

-rw------- 1 LIZARDO\tux LIZARDO\domain users 87 Nov 15 13:51

 /usr/share/servlist.conf

> sudo l /home/LIZARDO/tux/.config/hexchat/servlist.conf

lrwxrwxrwx 1 root root 24 Nov 15 13:51 /home/LIZARDO/tux/.config/

 hexchat/servlist.conf -> /usr/share/servlist.conf

Our Group Policy Cache at /var/lib/samba/gpo.tdb shows the two policies
have been applied. Listing the target, we also see that the symlink now
exists. If we output the contents of our symlink, we can see that it is indeed
pointing to our configuration file that we uploaded to the SYSVOL earlier.

> sudo cat /home/LIZARDO/tux/.config/hexchat/servlist.conf

N=Libera.Chat

L=1

E=UTF-8 (Unicode)

F=23

D=0

S=irc.libera.chat/6697

J=#samba-technical

11 Sudoers Policies

The purpose of the Sudoers Polices are to deploy sudo rules to a Linux client.
Naturally, only Machine policy is supported.

This policy is physically stored in two different locations on the SYSVOL, in
MACHINE/Registry.pol and in MACHINE/VGP/VTLA/Sudo/
SudoersConfiguration/manifest.xml. The manifest.xml is in xml format,
and is easily modified manually using a text editor. The Registry.pol is in
registry format. See chapter 21 for details on how to manually modify this
file.

11.1 Server Side Extension

The Server Side Extensions (SSE) for Sudoers policies are distributed via
either Administrative Templates (see 20.1 in section 20.1.1) or via the
command samba-tool gpo manage sudoers. Rules added via the GPME can
be modified from samba-tool (as of Samba 4.18), but rules added via samba-
tool gpo manage sudoers will not be visible in the GPME.

11.1.1 Managing Sudoers Policy via the GPME

Setting up the ADMX templates for this policy is described in chapter 22
section 22.1.

To add a new sudo rule using the Group Policy Management Editor (GPME):

1. Open the Group Policy Management Editor. For instructions on
accessing the GPME, see chapter 4 section 4.1.

2. In the Group Policy Management Editor window, navigate to Computer
Configuration > Policies > Administrative Templates > Samba

> Unix Settings.

Figure 11.1: Group Policy Management Editor

3. In the right pane, double-click on the “Sudo Rights” setting.

4. In the “Sudo Rights” dialog box, click on the “Show” button next to
“Sudoers commands”.

5. In the “Show Contents” dialog box, enter a new sudo rule.

6. Click “OK” to save the new sudo rule and close the dialog box.

Figure 11.2: Adding a Sudo Rule

After applying this rule, you can list the rule using samba-tool.

> samba-tool gpo manage sudoers list \

 {31B2F340-016D-11D2-945F-00C04FB984F9} -UAdministrator

fakeu ALL=(ALL) NOPASSWD: ALL

11.1.2 Managing Sudoers Policy via samba-tool

The Sudoers Policy can also be set via the samba-tool gpo manage sudoers
command, which has 3 subcommands; add, list, and remove.

> samba-tool gpo manage sudoers --help

Usage: samba-tool gpo manage sudoers <subcommand>

Manage Sudoers Group Policy Objects

Options:

 -h, --help show this help message and exit

Available subcommands:

 add - Adds a Samba Sudoers Group Policy to the sysvol

 list - List Samba Sudoers Group Policy from the sysvol

 remove - Removes a Samba Sudoers Group Policy from the sysvol

To add a new Sudoers rule to the SYSVOL, call the samba-tool gpo manage
sudoers add command.

Let’s add a simple rule for testing.

> samba-tool gpo manage sudoers add \

 {31B2F340-016D-11D2-945F-00C04FB984F9} ALL ALL fakeu fakeg \

 -UAdministrator

> samba-tool gpo manage sudoers list \

 {31B2F340-016D-11D2-945F-00C04FB984F9} -UAdministrator

fakeu,fakeg% ALL=(ALL) NOPASSWD: ALL

fakeu ALL=(ALL) NOPASSWD: ALL

You’ll notice that listing the entries now includes the entry we just created, as
well as the one we added earlier using the GPME.

11.2 Client Side Extension

Samba actually supplies 3 different Client Side Extensions (CSE) for the
Sudoers policy. This is to support 3 different SSE providers. The first is
Samba’s original policy, which is modified using the GPME as explained in
section 11.1.1. The second is the Vintela compatible policy, which can be set
using samba-tool as explained in section 11.1.2. The final CSE is the
Centrify compatible policy, which is only provided as a convenience for
migration. All these CSEs behave the same in how they apply policy (and
share some of the same code). The preceding instructions refer to all three
CSEs.

samba-tool gpo manage sudoers add <gpo> <command> <user> <users>

The Sudoer CSEs create a file within /etc/sudoers.d for each rule specified
on the SYSVOL. Each rule is validated before installing, to ensure the system
isn’t left in a broken state.

Let’s list the Resultant Set of Policy to view the Sudoer rules we created in
the previous sections.

> sudo /usr/sbin/samba-gpupdate --rsop

Resultant Set of Policy

Computer Policy

GPO: Default Domain Policy

===

 CSE: gp_sudoers_ext

 Policy Type: Sudo Rights

 [fakeu ALL=(ALL) NOPASSWD: ALL]

 CSE: vgp_sudoers_ext

 Policy Type: VGP/Unix Settings/Sudo Rights

 [fakeu,fakeg% ALL=(ALL) NOPASSWD: ALL]

 CSE: gp_centrify_sudoers_ext

===

Notice that both the rules we created earlier are listed, but under different
CSEs. These policies will be applied by different CSEs because they are
stored on the SYSVOL differently. The results will be similar though.
Currently we don’t have any Centrify combatible policy in our environment,
so this CSE remains empty.

Let’s now force our policy to apply and see how the CSEs behave.

> sudo /usr/sbin/samba-gpupdate --force

> sudo tdbdump /var/lib/samba/gpo.tdb -k "TESTSYSDM$" \

 | sed -r "s/\\\22/\"/g" | sed -r "s/\\\5C/\\\\/g" \

 | xmllint --xpath "//gp_ext[@name='Unix Settings/Sudo Rights' or

 @name='VGP/Unix Settings/Sudo Rights']" - \

 | xmllint --format -

<gp_ext name="Unix Settings/Sudo Rights">

 <attribute name="ZmFrZXUgQUxMPShBTEwpIE5PUEFTU1dEOiBBTEw=">

 /etc/sudoers.d/gp_mzarfh6k

 </attribute>

</gp_ext>

<gp_ext name="VGP/Unix Settings/Sudo Rights">

 <attribute

name="ZmFrZXUsZmFrZWclIEFMTD0oQUxMKSBOT1BBU1NXRDogQUxM">

 /etc/sudoers.d/gp_qy2eo07y

 </attribute>

</gp_ext>

We can see the Sudoer rules have been applied to
/etc/sudoers.d/gp_mzarfh6k and /etc/sudoers.d/gp_qy2eo07y.

> sudo cat /etc/sudoers.d/gp_mzarfh6k

autogenerated by samba

#

This file is generated by the gp_sudoers_ext Group Policy

Client Side Extension. To modify the contents of this file,

modify the appropriate Group Policy objects which apply

to this machine. DO NOT MODIFY THIS FILE DIRECTLY.

#

fakeu ALL=(ALL) NOPASSWD: ALL

> sudo cat /etc/sudoers.d/gp_qy2eo07y

autogenerated by samba

#

This file is generated by the gp_sudoers_ext Group Policy

Client Side Extension. To modify the contents of this file,

modify the appropriate Group Policy objects which apply

to this machine. DO NOT MODIFY THIS FILE DIRECTLY.

#

fakeu,fakeg% ALL=(ALL) NOPASSWD: ALL

12 Message Policies

The purpose of the Message policy is to set the contents of the /etc/motd and
/etc/issue files. These are Machine only policies.

This policy is physically stored in three different locations on the SYSVOL,
in MACHINE/Registry.pol, MACHINE/VGP/VTLA/Unix/Issue/
manifest.xml, and MACHINE/VGP/VTLA/Unix/MOTD/ manifest.xml.
The manifest.xml files are in xml format, and are easily modified manually
using a text editor. The Registry.pol is in registry format. See chapter 21
for details on how to manually modify this file.

12.1 Server Side Extension

The Server Side Extensions (SSE) for Message policies are distributed via
either Administrative Templates (see chapter 20.1 in section 20.1.1) or via the
commands samba-tool gpo manage motd and samba-tool gpo manage

issue. Rules added via GPME will not be visible to the respective samba-
tool commands, and vice versa. This is because the samba-tool commands
are intended to manage Vintela Group Policy compatability. These two SSEs
should not be used in conjunction to one another, as it will cause
unpredictable results on the client.

12.1.1 Managing Message Policy via the GPME

Setting up the ADMX templates for this policy is described in chapter 22
section 22.1.

To edit the “Message of the day” and “Login Prompt Message” settings using
the Group Policy Management Editor (GPME):

1. Open the Group Policy Management Editor. For instructions on
accessing the GPME, see chapter 4 section 4.1.

2. In the Group Policy Management Editor window, navigate to Computer
Configuration > Policies > Administrative Templates > Samba

> Unix Settings > Messages.

Figure 12.1: Group Policy Management Editor

3. In the right pane, double-click on the “Message of the day” setting.

4. In the “Message of the day” dialog box, enter the desired message in the
text field.

5. Click “OK” to save the changes and close the dialog box.

Figure 12.2: Message of the day

6. In the right pane, double-click on the “Login Prompt Message” setting.

7. In the “Login Prompt Message” dialog box, enter the desired message in
the text field. The “Help” field on the right explains the various options
for this message.

8. Click “OK” to save the changes and close the dialog box.

Figure 12.3: Login Prompt Message

12.1.2 Managing Message Policy via samba-tool

The samba-tool gpo manage motd and samba-tool gpo manage issue
commands each have 2 subcommands; set and list.

> samba-tool gpo manage motd

Usage: samba-tool gpo manage motd <subcommand>

Manage Message of the Day Group Policy Objects

Options:

 -h, --help show this help message and exit

Available subcommands:

 list - List VGP MOTD Group Policy from the sysvol

 set - Sets a VGP MOTD Group Policy to the sysvol

The syntax is the same for both motd and issue. The list command simply
lists the current value of the setting, while the set command will set the
contents of the setting.

To use the samba-tool gpo manage motd list command, you need to
provide the name of the GPO as an argument. For example:

To use the samba-tool gpo manage motd set command, you need to
provide the name of the GPO as an argument, followed by the message you
want to set as the MOTD. For example:

If no value is provided for the message, the MOTD will be unset and will not
be displayed to users when they log in.

Let’s set some messages for testing later.

> samba-tool gpo manage motd set \

 {31B2F340-016D-11D2-945F-00C04FB984F9} \

 "motd set from samba-tool" -UAdministrator

> samba-tool gpo manage issue set \

 {31B2F340-016D-11D2-945F-00C04FB984F9} \

 "issue set from samba-tool" -UAdministrator

Doing a list for good measure, we see that the policy is set on the SYSVOL.

> samba-tool gpo manage motd list \

 {31B2F340-016D-11D2-945F-00C04FB984F9} -UAdministrator; echo

motd set from samba-tool

> samba-tool gpo manage issue list \

 {31B2F340-016D-11D2-945F-00C04FB984F9} -UAdministrator; echo

issue set from samba-tool

samba-tool gpo manage motd list \

 {31B2F340-016D-11D2-945F-00C04FB984F9}

samba-tool gpo manage motd set \

 {31B2F340-016D-11D2-945F-00C04FB984F9} "Welcome to the server!

 Please make sure to read the guidelines before proceeding."

12.2 Client Side Extension

Samba provides 3 different Client Side Extensions (CSE) for the Messages
policy. The Samba policy distributed via the GPME discussed in 12.1.1
called gp_msgs_ext, and the Vintela compatible policy split in 2 parts
discussed in 12.1.2 called vgp_motd_ext and vgp_issue_ext.

These CSEs set the contents of /etc/motd and /etc/issue. If both Samba
and Vintela compatible policies are set, they will conflict.

Let’s list the Resultant Set of Policy to view what will be applied by samba-
gpupdate.

> sudo /usr/sbin/samba-gpupdate --rsop

Resultant Set of Policy

Computer Policy

GPO: Default Domain Policy

===

 CSE: gp_msgs_ext

 Policy Type: /etc/motd

Welcome to Linux Group Policy!

 Policy Type: /etc/issue

Welcome to \s \r \l

 CSE: vgp_motd_ext

 Policy Type: /etc/motd

motd set from samba-tool

 CSE: vgp_issue_ext

 Policy Type: /etc/issue

issue set from samba-tool

===

Because both these policies are set, we can’t predict which one will actually
be applied. Let’s do a force and see what the result is.

> sudo /usr/sbin/samba-gpupdate --force

> sudo tdbdump /var/lib/samba/gpo.tdb -k "TESTSYSDM$" \

 | sed -r "s/\\\22/\"/g" | sed -r "s/\\\5C/\\\\/g" \

 | xmllint --xpath "//gp_ext[@name='Unix Settings/Messages' or

 @name='Unix Settings/Message

 of the Day' or

 @name='Unix Settings/Issue']" - \

 | xmllint --format -

<gp_ext name="Unix Settings/Messages">

 <attribute name="motd"/>

 <attribute name="issue">

 Welcome to openSUSE Tumbleweed

 </attribute>

</gp_ext>

<gp_ext name="Unix Settings/Message of the Day">

 <attribute name="motd">

 Welcome to Linux Group Policy!

 </attribute>

</gp_ext>

<gp_ext name="Unix Settings/Issue">

 <attribute name="issue">

 Welcome to \5Cs \5Cr \5Cl

 </attribute>

</gp_ext>

Note that Messages policy stores the previous value of the message content in
the Group Policy Cache. So we can discern from the message content that
vgp_motd_ext and vgp_issue_ext applied last (since the messages from
gp_msgs_ext show up in the log). We can confirm this by checking the
contents of /etc/motd and /etc/issue.

> cat /etc/motd; echo

motd set from samba-tool

> cat /etc/issue; echo

issue set from samba-tool

13 PAM Access Policies

PAM Access Policy allows you to set host access rules for client machines.
Specifically, it specifies rules in /etc/security/access.d to allow or deny
access to the host.

This policy is physically stored on the SYSVOL in two files,
MACHINE/VGP/VTLA/VAS/HostAccessControl/Allow/manifest.xml and
MACHINE/VGP/VTLA/VAS/HostAccessControl/Deny/manifest.xml. The
manifest.xml files are in xml format, and are easily modified manually using
a text editor.

13.1 Server Side Extension

The Server Side Extensions (SSE) for PAM Access Policies is administered
using the samba-tool gpo manage access command. This SSE cannot be
modified using the GPME.

13.1.1 Managing PAM Access Policies via samba-tool

The samba-tool gpo manage access command has 3 subcommands; add,
list, and remove.

> samba-tool gpo manage access

Usage: samba-tool gpo manage access <subcommand>

Manage Host Access Group Policy Objects

Options:

 -h, --help show this help message and exit

Available subcommands:

 add - Adds a VGP Host Access Group Policy to the sysvol

 list - List VGP Host Access Group Policy from the sysvol

 remove - Remove a VGP Host Access Group Policy from the sysvol

To use the samba-tool gpo manage access add command, you need to
provide the name of the GPO as the first argument, followed by the access
setting (either “allow” or “deny”), the common name (cn) of the host or user
you want to allow or deny access to, and the domain of the host or user. For
example:

Any time an allow entry is detected by the client, an implicit deny ALL will
be assumed.

Let’s add a few rules that restricts access to a couple of specific users.

> samba-tool gpo manage access add \

 {31B2F340-016D-11D2-945F-00C04FB984F9} allow Administrator \

 lizardo.suse.de -UAdministrator

> samba-tool gpo manage access add \

 {31B2F340-016D-11D2-945F-00C04FB984F9} allow tux \

 lizardo.suse.de -UAdministrator

These grant access to the users tux and Administrator on the host. If we list
our access policies, we can see they are ready for delivery to the client.

> samba-tool gpo manage access list \

 {31B2F340-016D-11D2-945F-00C04FB984F9} -UAdministrator

+:lizardo.suse.de\Administrator:ALL

+:lizardo.suse.de\tux:ALL

13.2 Client Side Extension

The PAM Access Client Side Extension (CSE) will create a new file in the
/etc/security/access.d directory for each host access rule.

The PAM module pam_access must be configured or this CSE will do
nothing (see man pam_access). This can be configured using the command
pam-config --add --access. It may be beneficial to ensure this is enabled

samba-tool gpo manage access add <gpo> <allow/deny> <cn> <domain>

by enforcing a Script policy which executes pam-config --add --access
(see chapter 7 on how to schedule a script policy).

Let’s list the Resultant Set of Policy to view the policies we’ve created for
our host access control.

> sudo /usr/sbin/samba-gpupdate --rsop

Resultant Set of Policy

Computer Policy

GPO: Default Domain Policy

===

 CSE: gp_scripts_ext

 Policy Type: Hourly Scripts

 [pam-config --add --access]

 CSE: vgp_access_ext

 Policy Type: VGP/Unix Settings/Host Access

 [+:Administrator\lizardo.suse.de:ALL]

 [+:tux\lizardo.suse.de:ALL]

===

Our PAM Access policy and our pam-config check are both listed.

Let’s now force an apply.

> sudo /usr/sbin/samba-gpupdate --force

> sudo tdbdump /var/lib/samba/gpo.tdb -k "TESTSYSDM$" \

 | sed -r "s/\\\22/\"/g" | sed -r "s/\\\5C/\\\\/g" \

 | xmllint --xpath "//gp_ext[@name='Unix Settings/Scripts' or

 @name='VGP/Unix Settings/Host

 Access']" - \

 | xmllint --format -

<gp_ext name="Unix Settings/Scripts">

 <attribute name="Software\\Policies\\Samba\\Unix Settings\\

 Daily Scripts:ZWNobyBoZWxsbyB3b3JsZA==">

 /etc/cron.daily/gp_pawtjsiq

 </attribute>

</gp_ext>

<gp_ext name="VGP/Unix Settings/Host Access">

 <attribute name="6bf0...fb9c">

 /etc/security/access.d/9000000001_gp_DENY_ALL.conf:

 /etc/security/access.d/0000000001_gp.conf

 </attribute>

</gp_ext>

Notice that the PAM Access policy generated 2 different files,
/etc/security/access.d/0000000001_gp.conf and
/etc/security/access.d/9000000001_gp_DENY_ALL.conf. Let’s check the
contents of these files to see what was generated.

> cat /etc/security/access.d/0000000001_gp.conf; echo

autogenerated by samba

#

This file is generated by the vgp_access_ext Group Policy

Client Side Extension. To modify the contents of this file,

modify the appropriate Group Policy objects which apply

to this machine. DO NOT MODIFY THIS FILE DIRECTLY.

#

+:lizardo.suse.de\Administrator:ALL

+:lizardo.suse.de\tux:ALL

> cat /etc/security/access.d/9000000001_gp_DENY_ALL.conf; echo

autogenerated by samba

#

This file is generated by the vgp_access_ext Group Policy

Client Side Extension. To modify the contents of this file,

modify the appropriate Group Policy objects which apply

to this machine. DO NOT MODIFY THIS FILE DIRECTLY.

#

-:ALL:ALL

The PAM Access CSE automatically added a deny all entry. The pam_access
pam module reads host access rules in numerical order from the
/etc/security/access.d directory. This automatic deny all entry was
intentionally placed numerically after our allow entries (9000000001 >
0000000001), to ensure the allow entries are processed first.

You should notice at this point that it would be senseless to intermix allow

and deny rules. Any time an allow rule is applied to a client, deny all else is
implicitly assumed. It doesn’t hurt to have extra deny rules, but they would
be pointless. When only deny rules are set in the policy, then allow all else is
implicitly assumed (which is the pam default, and no extra rules are added).

You can safely stack group policies which contain different allow rules, since
the deny all else entries will always be placed in a range above the host
access rules. You will see multiple deny all else entries generated, and this is
intentional. This ensures there is always a deny all else entry associated with
any allow rules which are applied.

14 Certificate Auto Enrollment
Policy

Certificate Auto Enrollment allows devices to enroll for certificates from
Active Directory Certificate Services. Samba’s Certificate Auto Enrollment
uses the certmonger service to keep track of certificates. It also uses the
cepces plugin to certmonger.

14.1 Server Side Extension

The Server Side Extension (SSE) for Certificate Auto Enrollment is part of
the Group Policy Management Editor (GPME). Currently, no samba-tool
command is available for managing this policy. The policy requires access to
a Windows certificate server. On the certificate server, the roles Certification
Authority, Certificate Enrollment Policy Web Service, and Certificate
Enrollment Web Service all must be installed and configured. Optionally the
role Network Device Enrollment Service can be installed to simplify the
fetching of the root certificate chain by the client. Configuring the certificate
server is beyond the scope of this book.

Optionally, the Network Device Enrollment role can be configured on the
server, which will allow the client to fetch the root certificate chain. Without
this role, the Client Side Extension will report the following warnings:

[W26775]| Failed to fetch the root certificate chain. | {}

[W05621]| The Network Device Enrollment Service is either not

 installed or not configured. | {}

[W11946]| Installing the server certificate only. | {}

14.1.1 Managing Certificate Auto Enrollment via the GPME

To enable Certificate Auto Enrollment using the Group Policy Management
Editor (GPME):

1. Open the Group Policy Management Editor. For instructions on
accessing the GPME, see chapter 4 section 4.1.

2. In the Group Policy Management Editor window, navigate to Computer
Configuration > Policies > Windows Settings > Security

Settings > Public Key Policies.

Figure 14.1: Public Key Policies

3. Double click on and open the Certificate Services Client - Auto-
Enrollment properties.

Figure 14.2: Certificate Services Client - Auto-Enrollment

4. In the properties dialog, set the Configuration Model to “Enabled” and
check the boxes to enable Renew expired certificates, update
pending certificates, and remove revoked certificates and
Update certificates that use certificate templates.

Figure 14.3: Enable Certificate Auto-Enrollment

5. Click “Apply” to apply the changes and “OK” to close the properties
dialog.

This has enabled simple Certificate Auto Enrollment. Next lets configure
advanced Certificate Auto Enrollment.

Advanced Certificate Auto Enrollment allows you to add multiple certificate
servers to your configuration. This is useful in a more complex environment
with multiple certificate servers, but is not necessary in a simple environment
with a single certificate server. The advanced configuration stores the policy
directly on the SYSVOL in the Registry.pol file, whereas a simple
configuration is stored in LDAP.

To configure Advanced Certificate Auto Enrollment:

1. In the Group Policy Management Editor window, navigate to Computer
Configuration > Policies > Windows Settings > Security

Settings > Public Key Policies.

2. Double-click on “Certificate Services Client - Certificate Enrollment
Policy” to open its properties.

Figure 14.4: Certificate Services Client - Certificate Enrollment Policy

3. Set the Configuration Model to Enabled. The default policy
(configured previously in the “Certificate Services Client - Auto-
Enrollment” properties) should already be listed under “Certificate
enrollment policy list.” You can disable this policy if desired by
unchecking the box next to the item in the list.

Figure 14.5: Certificate Services Client - Certificate Enrollment Policy:
Enabled

4. To add additional certificate servers for Certificate Auto Enrollment,
click “Add…”

Figure 14.6: Add a Certificate Enrollment Policy Server

5. In the Certificate Enrollment Policy Server dialog, enter the
enrollment policy server URI and set the authentication type. “Windows
integrated” authentication refers to Kerberos authentication.

6. You can set a priority for the policy, which determines the order in
which the policy is applied to a client machine.

7. When finished, click “Add” and then “Apply” in the properties dialog.
Click “OK” to close the dialog.

14.1.2 Certificate Templates

Certificate Templates instruct the client how to generate a certificate request

for the Certificate Authority. These templates are configured using the
Certification Authority utility included with the Remote Server
Administration Tools (RSAT) found in Windows.

To create a certificate template:

1. Open the Certification Authority utility, and click on Certificate
Templates in the tree.

Figure 14.7: Certification Authority utility

2. Right click on Certificates Templates in the tree and select Manage.

3. You’ll notice that there are a number of existing templates to choose
from. Right click on one of the templates in the list, and click Duplicate
Template.

Figure 14.8: Certificate Templates Console

4. Switch to the General tab, and set a name for your new template.

5. Set the number of years the certificate will be valid and the renewal
period.

Figure 14.9: Template Properties

6. It may be useful to also review the Cryptography tab and ensure the
cryptographic requirements for the certificate will meet the needs of
your organization.

7. Apply and close the properties by clicking OK. Close the Certificate
Templates Console

8. Next, to enable the new template, right click on Certificate

Templates in the tree within the Certification Authority utility, and click
New > Certificate Template to Issue.

9. In the Enable Certificate Templates dialog, select the template we
just created, and click OK.

Figure 14.10: Enable Certificate Templates

Our new template is now enabled, and should be in the list of enabled
templates in the Certification Authority utility.

Figure 14.11: Template Enabled

14.2 Client Side Extension

The Certificate Auto Enrollment Client Side Extension (CSE) will add new
Certificate Authorities to certmonger, and automatically request to track new
certificates based on the assigned Certificate Templates. This CSE requires
that the certmonger and cepces packages be installed.

Certificates will be installed in /var/lib/samba/certs and private keys in
/var/lib/samba/private/certs by default. It may be necessary to
configure a symlink policy, as explained in chapter 10, in order to link to a
more appropriate location for these files.

Let’s list the Resultant Set of Policy to view the Certificate Auto Enrollment
policy we created in the previous sections.

> sudo /usr/sbin/samba-gpupdate --rsop

Resultant Set of Policy

Computer Policy

GPO: Default Domain Policy

===

 CSE: gp_cert_auto_enroll_ext

 Policy Type: Auto Enrollment Policy

 [lizardo-WIN-QLIPDP2ISN7-CA] =

 [CA Certificate] =

-----BEGIN CERTIFICATE-----

<REDACTED>

-----END CERTIFICATE-----

 [Auto Enrollment Server] = WIN-

QLIPDP2ISN7.lizardo.suse.de

 [Templates] =

 [Machine]

 [TestComputerTemplate]

===

Notice that the new template we created in the previous section is listed under
the templates. The Machine template is also listed. This is a default template
enabled for joined computers (this template was named Computer in the list
of enabled templates we saw previously).

Let’s now force an apply and observe the results.

> sudo /usr/sbin/samba-gpupdate --force

> sudo tdbdump /var/lib/samba/gpo.tdb -k "TESTSYSDM$" \

 | sed -r "s/\\\22/\"/g" | sed -r "s/\\\5C/\\\\/g" \

 | xmllint --xpath "//gp_ext[@name='Cryptography\\

 AutoEnrollment']" - \

 | xmllint --format -

<gp_ext name="Cryptography\\AutoEnrollment">

 <attribute name="bGl6YXJkby1XSU4tUUxJUERQMklTTjctQ0E=">

 {"files": [

 "/var/lib/samba/certs/lizardo-WIN-QLIPDP2ISN7-CA.crt",

 "/etc/pki/trust/anchors/lizardo-WIN-QLIPDP2ISN7-CA.crt",

 "/var/lib/samba/private/certs/

 lizardo-WIN-QLIPDP2ISN7-CA.Machine.key",

 "/var/lib/samba/certs/

 lizardo-WIN-QLIPDP2ISN7-CA.Machine.crt",

 "/var/lib/samba/private/certs/

 lizardo-WIN-QLIPDP2ISN7-CA.TestComputerTemplate.key",

 "/var/lib/samba/certs/

 lizardo-WIN-QLIPDP2ISN7-CA.TestComputerTemplate.crt"

],

 "templates": [

 "lizardo-WIN-QLIPDP2ISN7-CA.Machine",

 "lizardo-WIN-QLIPDP2ISN7-CA.TestComputerTemplate"

]

 }

 </attribute>

</gp_ext>

The log details show that a number of files were created. Let’s take a look at
these files.

> sudo ls /var/lib/samba/certs/

lizardo-WIN-QLIPDP2ISN7-CA.crt

lizardo-WIN-QLIPDP2ISN7-CA.Machine.crt

lizardo-WIN-QLIPDP2ISN7-CA.TestComputerTemplate.crt

> sudo ls /var/lib/samba/private/certs/

lizardo-WIN-QLIPDP2ISN7-CA.Machine.key

lizardo-WIN-QLIPDP2ISN7-CA.TestComputerTemplate.key

> sudo ls /etc/pki/trust/anchors/

lizardo-WIN-QLIPDP2ISN7-CA.crt ->

 /var/lib/samba/certs/lizardo-WIN-QLIPDP2ISN7-CA.crt

The CSE download the root certificate from our CA (lizardo-WIN-
QLIPDP2ISN7-CA.crt), and then linked it inside /etc/pki/trust/anchors.
This is the system trust store. In addition to linking our CA root certificate to
the trust store, the CSE also called the update-ca-certificates command
to refresh the certificate store. Take a look at man update-ca-certificates
for more details on how this works.

Now that we see our certificates have been installed, lets take a look at
certmonger to see our CA and make sure our certificates are being auto-
renewed.

> sudo getcert list-cas

CA 'lizardo-WIN-QLIPDP2ISN7-CA':

 is-default: no

 ca-type: EXTERNAL

 helper-location: /usr/libexec/certmonger/cepces-submit \

 --server=WIN-QLIPDP2ISN7.lizardo.suse.de \

 --auth=Kerberos

> sudo getcert list

Number of certificates and requests being tracked: 2.

Request ID 'lizardo-WIN-QLIPDP2ISN7-CA.Machine':

 status: MONITORING

 stuck: no

 key pair storage: type=FILE,

 location='/var/lib/samba/private/certs/

 lizardo-WIN-QLIPDP2ISN7-CA.Machine.key'

 certificate: type=FILE,

 location='/var/lib/samba/certs/

 lizardo-WIN-QLIPDP2ISN7-CA.Machine.crt'

 CA: lizardo-WIN-QLIPDP2ISN7-CA

 issuer: CN=lizardo-WIN-QLIPDP2ISN7-CA,

 DC=lizardo,DC=suse,DC=de

 subject: CN=testsysdm.lizardo.suse.de

 issued: 2022-12-08 12:57:35 MST

 expires: 2023-12-08 12:57:35 MST

 dns: testsysdm.lizardo.suse.de

 key usage: digitalSignature,keyEncipherment

 eku: id-kp-clientAuth,id-kp-serverAuth

 certificate template/profile: Machine

 profile: Machine

 pre-save command:

 post-save command:

 track: yes

 auto-renew: yes

Request ID 'lizardo-WIN-QLIPDP2ISN7-CA.TestComputerTemplate':

 status: MONITORING

 stuck: no

 key pair storage: type=FILE,

 location='/var/lib/samba/private/certs/

 lizardo-WIN-QLIPDP2ISN7-CA.TestComputerTemplate.key'

 certificate: type=FILE,

 location='/var/lib/samba/certs/

 lizardo-WIN-QLIPDP2ISN7-CA.TestComputerTemplate.crt'

 CA: lizardo-WIN-QLIPDP2ISN7-CA

 issuer: CN=lizardo-WIN-QLIPDP2ISN7-CA,

 DC=lizardo,DC=suse,DC=de

 subject:

 issued: 2022-12-08 12:57:35 MST

 expires: 2023-12-08 12:57:35 MST

 dns: testsysdm.lizardo.suse.de

 key usage: digitalSignature,keyEncipherment

 eku: id-kp-serverAuth,id-kp-clientAuth

 profile: TestComputerTemplate

 pre-save command:

 post-save command:

 track: yes

 auto-renew: yes

We see that certmonger is aware of our CA, and is tracking the template we
created, and also the default Machine template. The status on your certificates
should say MONITORING, as it does here. If not, then you’ll need to do some
investigation to see why.

14.2.1 Trouble Shooting Certificates

If your certificates are not listed with a MONITORING status in getcert list,
then you can start trouble shooting by rerunning sudo /usr/sbin/samba-
gpupdate --force. Look for any errors in the output that could indicate what
caused the problem. For example, a common error you’ll encounter is Failed
to fetch the list of supported templates. This error comes with a
detailed backtrace. Look for the Caused by message.

14.2.1.1 Certificate doesn’t match

This particular error happens when Internet Information Services (IIS) has the
wrong root certificate selected.

(Caused by

 SSLError(

 CertificateError(

 "hostname \'win-qlipdp2isn7.lizardo.suse.de\' doesn\'t

 match \'lizardo-WIN-QLIPDP2ISN7-CA\'"

)

)

)

To resolve this error, open the IIS Manager, select the Default Web Site in
the tree, then click Bindings in the right side Actions pane.

Figure 14.12: IIS Manager

Highlight the https binding, then select Edit.... Select the correct SSL
certificate, then click OK to save.

Figure 14.13: Edit Site Binding

14.2.1.2 python-requests security level

Another error you may encounter is actually specific to the python-requests
module.

(Caused by

 SSLError(

 SSLError(1,

 '[SSL: DH_KEY_TOO_SMALL] dh key too small (_ssl.c:852)'

),

)

)

This DH_KEY_TOO_SMALL error is caused by a default security level change in
python-requests. You can work around this error by setting
openssl_seclevel=1 in the global section of your cepces.conf.

14.2.1.3 Checking request failures

If the CA failed to issue a certificate when the template request was sent, we
can check the Certification Authority utility to see why a request was
rejected. If you click in the tree, there are lists of Failed Requests, Pending

Requests, Issued Certificates, and Revoked Certificates. If your
request failed for some reason, it may show up under Failed Requests, for
example.

Figure 14.14: Issued Certificates

You can see, for example, in the Issued Certificates list, that the
certificates we are monitoring on our test machine are listed here (the two
most recent requests).

14.2.1.4 Examining logs

Check the logs to track down other issues. The cepces plugin logs to
/var/log/cepces/cepces.log by default. Check the handler_fileHandler
section of /etc/cepces/logging.conf for the exact location of the log.
Additionally, some errors may end up in the certmonger logs, instead of
cepces. You can check journalctl -xe -t certmonger for certmonger

messages.

15 Firefox Policy

Firefox Policy deploys a policies.json file to client machines to customize
how Firefox looks and operates.

This policy is physically stored on the SYSVOL in
MACHINE/Registry.pol. It is stored in registry format. See chapter 21 for
details on how to manually modify this file.

15.1 Server Side Extension

The Server Side Extension (SSE) for Firefox Policy is distributed via
Administrative Templates (see chapter 20.1 in section 20.1.1). This SSE uses
the admx templates provided by Mozilla.

Setting up the ADMX templates for this policy is described in chapter 22
section 22.2.

15.2 Managing Firefox Policy via the GPME

Open the GPME and navigate to Computer Configuration >

Administrative Templates > Mozilla > Firefox.

Figure 15.1: Mozilla Administrative Templates

There are many options to choose from, but for this example we’ll just test
setting a homepage. Click on Home page in the tree, and we’re going to
modify both the Start Page and the URL for Home page.

Figure 15.2: Start Page

First we’ll set the Start Page to Homepage (Locked). This requires the start
page to always open the homepage, and the user will be unable to change it to
point anywhere else.

Figure 15.3: Home Page

Next we’ll set the homepage URL, and check the box Don't allow the
homepage to be changed. This will prevent the user from changing the
homepage.

Note that when setting a home page, you MUST include the http or https
prefix, or Firefox will ignore the policy.

15.3 Client Side Extension

The Firefox Client Side Extension (CSE) creates 2 policy files. One at
/usr/lib64/firefox/distribution/policies.json and the other at
/etc/firefox/policies/policies.json. These files will contain exactly
the same information. The only reason there is a duplicate, is because
different versions of Firefox require the policy file in different locations.

Let’s list the Resultant Set of Policy to view policies we set in the previous
section.

> sudo /usr/sbin/samba-gpupdate --rsop

Resultant Set of Policy

Computer Policy

GPO: Default Domain Policy

===

 CSE: gp_firefox_ext

 Policy Type: Software\Policies\Mozilla\Firefox\

 Homepage\StartPage

 homepage-locked

 Policy Type: Software\Policies\Mozilla\Firefox\

 Homepage\URL

 https://samba.org

 Policy Type: Software\Policies\Mozilla\Firefox\

 Homepage\Locked

 1

===

We see that the policy we set is listed. Next let’s force an apply of the policy,
and see what is logged in the Group Policy Cache.

> sudo /usr/sbin/samba-gpupdate --force

> sudo tdbdump /var/lib/samba/gpo.tdb -k "TESTSYSDM$" \

 | sed -r "s/\\\22/\"/g" | sed -r "s/\\\5C/\\\\/g" \

 | xmllint --xpath "//gp_ext[@name='Mozilla/Firefox']" - \

 | xmllint --format -

<gp_ext name="Mozilla/Firefox">

 <attribute name="policies.json">

 {"policies": {}}

 </attribute>

</gp_ext>

There isn’t much interesting in the cache, since it just tells us that we had no
policies set previously. Let’s look inside our policy file and see what was
applied.

> npx prettier /etc/firefox/policies/policies.json

{

 "policies": {

 "Homepage": {

 "StartPage": "homepage-locked",

 "URL": "https://samba.org",

 "Locked": true

 }

 }

}

It appears that our policies are applied. Opening Firefox, we see that the
policy is being enforced.

Figure 15.4: Firefox

If you open your browser settings, you’ll notice a warning message indicating
that your organization is managing the browser. If Firefox encountered any
problems enforcing the policy, a warning will be listed here.

Figure 15.5: Managed Firefox

Notice that the homepage settings are now grayed out in the settings dialog,
and can’t be modified by the user.

16 Chromium/Chrome Policy

Chromium Policy deploys a json file to client machines to customize how the
browser looks and operates.

This policy is physically stored on the SYSVOL in
MACHINE/Registry.pol. It is stored in registry format. See chapter 21 for
details on how to manually modify this file.

16.1 Server Side Extension

The Server Side Extension (SSE) for Chromium Policy is distributed via
Administrative Templates (see chapter 20.1 in section 20.1.1). This SSE uses
the admx templates provided by Google. See
https://support.google.com/chrome/a/answer/187202 for the latest release of
Google’s templates.

Setting up the ADMX templates for this policy is described in chapter 22
section 22.3.

16.1.1 Managing Chromium Policy via the GPME

Open the GPME and navigate to Computer Configuration >

Administrative Templates > Google.

https://support.google.com/chrome/a/answer/187202

Figure 16.1: Google Administrative Templates

You’ll notice that there are two sections for Chrome, titled Google Chrome
and Google Chrome - Default Settings (users can override). The
settings in Google Chrome will always be enforced. The settings in Default
Settings will be distributed, but will not be enforced (users can modify
these).

For this example, let’s enforce a homepage. Select Google Chrome >
Startup, Home page and New Tab page. First, let’s set the New Tab Page
as homepage option, forcing our homepage choice to load when we first open
a Chromium tab.

Figure 16.2: Use New Tab Page as homepage

Next, let’s set the new tab page URL.

Figure 16.3: Configure the New Tab page URL

Finally, let’s tell Chromium to default to the New Tab Page when first
opening.

Figure 16.4: Action on startup

16.2 Client Side Extension

Chromium policy comes with 2 Client Side Extensions (CSEs), which
generate a total of 4 policy files. Each CSE generates a managed policy file
(these policies are enforced), and a recommended policy file (these policies
are set but not enforced). The generated json files can be found in
/etc/chromium/policies/managed,
/etc/chromium/policies/recommended,

/etc/opt/chrome/policies/managed, and
/etc/opt/chrome/policies/recommended.

Let’s list the Resultant Set of Policy to view policies we set in the previous
section.

> sudo /usr/sbin/samba-gpupdate --rsop

Resultant Set of Policy

Computer Policy

GPO: Default Domain Policy

===

 CSE: gp_chromium_ext

 Policy Type: Software\Policies\Google\Chrome\

 HomepageIsNewTabPage

 1

 Policy Type: Software\Policies\Google\Chrome\

 NewTabPageLocation

 https://samba.org

 Policy Type: Software\Policies\Google\Chrome\

 RestoreOnStartup

 5

 CSE: gp_chrome_ext

 Policy Type: Software\Policies\Google\Chrome\

 HomepageIsNewTabPage

 1

 Policy Type: Software\Policies\Google\Chrome\

 NewTabPageLocation

 https://samba.org

 Policy Type: Software\Policies\Google\Chrome\

 RestoreOnStartup

 5

===

Notice that the policy which will be applied for Chrome and Chromium are
identical. This is because each CSE is reading from the same policy. Let’s
now force a policy apply, and see what is logged in the Group Policy Cache.

> sudo /usr/sbin/samba-gpupdate --force

> sudo tdbdump /var/lib/samba/gpo.tdb -k "TESTSYSDM$" \

 | sed -r "s/\\\22/\"/g" | sed -r "s/\\\5C/\\\\/g" \

 | xmllint --xpath "//gp_ext[@name='Google/Chromium' or

 @name='Google/Chrome']" - \

 | xmllint --format -

<gp_ext name="Google/Chromium">

 <attribute name="recommended">

 9327...d13f:

 /etc/chromium/policies/recommended/gp_g4_82tuo.json

 </attribute>

 <attribute name="managed">

 d452...1935:

 /etc/chromium/policies/managed/gp_l_k9uvxk.json

 </attribute>

</gp_ext>

<gp_ext name="Google/Chrome">

 <attribute name="recommended">

 9327...d13f:

 /etc/opt/chrome/policies/recommended/gp_7p6q0bxf.json

 </attribute>

 <attribute name="managed">

 d452...1935:

 /etc/opt/chrome/policies/managed/gp_fcthg4bc.json

 </attribute>

</gp_ext>

Our cache shows that 4 json policies were created in the directories where we
expected them. Let’s look at the contents.

> npx prettier

/etc/chromium/policies/recommended/gp_g4_82tuo.json

{}

> npx prettier /etc/chromium/policies/managed/gp_l_k9uvxk.json

{

 "HomepageIsNewTabPage": true,

 "NewTabPageLocation": "https://samba.org",

 "RestoreOnStartup": 5

}

> npx prettier \

 /etc/opt/chrome/policies/recommended/gp_7p6q0bxf.json

{}

> npx prettier /etc/opt/chrome/policies/managed/gp_fcthg4bc.json

{

 "HomepageIsNewTabPage": true,

 "NewTabPageLocation": "https://samba.org",

 "RestoreOnStartup": 5

}

As expected, the recommended policy files are empty, since we only set
managed policy. The managed is what we expected. Let’s now open Chrome,
and check that the policy was applied.

Figure 16.5: Chrome with default homepage

If you now open the browser settings, you’ll see a warning indicating that
your browser is being managed by your organization.

Figure 16.6: Chrome settings

Notice that the On startup options have been grayed out. Had we not set the
Action on startup, the user would still be able to modify the startup
options, and avoid the default homepage we just set.

17 GNOME Settings Policy

The GNOME Settings Policy deploys dconf settings that control the desktop
experience. These settings correspond to those defined in the GNOME
System Administration Guide found at https://help.gnome.org/admin/system-
admin-guide/stable/user-settings.html.en.

This policy is physically stored on the SYSVOL in
MACHINE/Registry.pol. It is stored in registry format. See chapter 21 for
details on how to manually modify this file.

17.1 Server Side Extension

The Server Side Extension (SSE) for Chromium Policy is distributed via
Administrative Templates (see chapter 20.1 in section 20.1.1). Setting up the
ADMX templates for this policy is described in chapter 22 section 22.1.

17.1.1 Managing GNOME Settings Policy via the GPME

Open the GPME and navigate to Computer Configuration >

Administrative Templates > GNOME Settings.

https://help.gnome.org/admin/system-admin-guide/stable/user-settings.html.en

Figure 17.1: GNOME Settings Administrative Templates

Let’s set the allowed online accounts, which will effect the Online Accounts
list in the GNOME Settings Dialog.

Figure 17.2: Whitelisted Online Accounts

17.2 Client Side Extension

The GNOME Settings Client Side Extension (CSE) creates various dconf
files to deploy the policy. After creating these policy files, the CSE executes
dconf update to apply the new policy. Users will need to log out and back in
again in order for these policies to take effect.

Let’s list the Resultant Set of Policy and view the lockdown settings we’ve
set.

> sudo /usr/sbin/samba-gpupdate --rsop

Resultant Set of Policy

Computer Policy

GPO: Default Domain Policy

===

 CSE: gp_gnome_settings_ext

 Policy Type: Whitelisted Online Accounts

 [google]

===

Next let’s force an apply of the policy, and see what is logged in the Group
Policy Cache.

> sudo /usr/sbin/samba-gpupdate --force

> sudo tdbdump /var/lib/samba/gpo.tdb -k "TESTSYSDM$" \

 | sed -r "s/\\\22/\"/g" | sed -r "s/\\\5C/\\\\/g" \

 | xmllint --xpath "//gp_ext[@name='GNOME Settings/

 Lock Down Settings']" - \

 | xmllint --format -

<gp_ext name="GNOME Settings/Lock Down Settings">

 <attribute name="Whitelisted Online Accounts">

 /etc/dconf/db/local.d/0000000001-goa;

 /etc/dconf/db/local.d/locks/0000000001-goa

 </attribute>

</gp_ext>

Checking the contents of the files, we see that our whitelisted provider is set,
and that the policy is locked (which prevents user modification).

> cat /etc/dconf/db/local.d/0000000001-goa

[org/gnome/online-accounts]

whitelisted-providers = ['google']

> cat /etc/dconf/db/local.d/locks/0000000001-goa; echo

/org/gnome/online-accounts/whitelisted-providers

We can also check the dconf output to see that the setting is applied.

> dconf dump / \

 | grep -E "(whitelisted-providers|org/gnome/online-accounts)"

[org/gnome/online-accounts]

whitelisted-providers=['google']

Recall that it’s necessary to log the user out and back in again. After which,
we can check the GNOME Settings dialog and see that Online Accounts are
restricted as requested.

Figure 17.3: Online Accounts

18 OpenSSH Policy

The OpenSSH Policy allows you to deploy OpenSSH settings to client
machines. The policies are applied to a file in the /etc/ssh/sshd_config.d
directory.

This policy is physically stored on the SYSVOL in MACHINE/VGP/VTLA
/SshCfg/SshD/manifest.xml. The manifest.xml file is in xml format, and is
easily modified manually using a text editor.

18.1 Server Side Extension

The Server Side Extensions (SSE) for OpenSSH Policy is administered using
the samba-tool gpo manage openssh command. This SSE cannot be
modified using the GPME.

18.1.1 Managing OpenSSH Policy via samba-tool

The samba-tool gpo manage openssh command has 2 subcommands; set
and list.

> samba-tool gpo manage openssh

Usage: samba-tool gpo manage openssh <subcommand>

Manage OpenSSH Group Policy Objects

Options:

 -h, --help show this help message and exit

Available subcommands:

 list - List VGP OpenSSH Group Policy from the sysvol

 set - Sets a VGP OpenSSH Group Policy to the sysvol

To set a new OpenSSH rule, call the samba-tool gpo manage openssh set
command, providing the following arguments:

1. gpo: the Group Policy Object (GPO) that you want to modify. This
MUST be the GUID of the GPO.

2. setting: the OpenSSH setting that you want to modify. See the man
page for sshd_config (man sshd_config) for a list of possible settings.

3. value: the value that you want to set for the specified setting. If you do
not provide a value, the policy will be unset.

Here is an example of how you might use this command to set the
KerberosAuthentication to Yes:

Then let’s list the policy to see what has been set on the SYSVOL.

> samba-tool gpo manage openssh list \

 {31B2F340-016D-11D2-945F-00C04FB984F9} -UAdministrator

KerberosAuthentication Yes

18.2 Client Side Extension

The OpenSSH Client Side Extension (CSE) will create a new file in the
/etc/ssh/sshd_config.d directory.

Let’s list the Resultant Set of Policy to view the policies we’ve created.

> sudo /usr/sbin/samba-gpupdate --rsop

Resultant Set of Policy

Computer Policy

GPO: Default Domain Policy

===

 CSE: vgp_openssh_ext

samba-tool gpo manage openssh set \

 {31B2F340-016D-11D2-945F-00C04FB984F9} \

 KerberosAuthentication Yes -UAdministrator

 Policy Type: VGP/Unix Settings/OpenSSH

 [KerberosAuthentication] = Yes

===

The KerberosAuthentication setting we set is listed as expected.

Let’s now force an apply.

sudo /usr/sbin/samba-gpupdate --force

> sudo tdbdump /var/lib/samba/gpo.tdb -k "TESTSYSDM$" \

 | sed -r "s/\\\22/\"/g" | sed -r "s/\\\5C/\\\\/g" \

 | xmllint --xpath "//gp_ext[@name='VGP/Unix

 Settings/OpenSSH']" - \

 | xmllint --format -

<gp_ext name="VGP/Unix Settings/OpenSSH">

 <attribute name="ezMx...Zy5k">

 /etc/ssh/sshd_config.d/gp_c7hytho4

 </attribute>

</gp_ext>

Notice that our new policy has been stored in
/etc/ssh/sshd_config.d/gp_c7hytho4. Let’s check the contents of this file
to see what was generated.

> sudo cat /etc/ssh/sshd_config.d/gp_c7hytho4

autogenerated by samba

#

This file is generated by the vgp_openssh_ext Group Policy

Client Side Extension. To modify the contents of this file,

modify the appropriate Group Policy objects which apply

to this machine. DO NOT MODIFY THIS FILE DIRECTLY.

#

KerberosAuthentication Yes

Our policy was successfully applied.

19 Firewalld Policy

The purpose of the Firewalld Policy is to apply firewalld rules to the client
machine.

This policy is physically stored on the SYSVOL in the
MACHINE/Registry.pol file within the subdirectory of the Group Policy
Object. It is stored in registry format. See chapter 21 for details on how to
manually modify this file.

19.1 Server Side Extension

The Server Side Extension (SSE) for the Firewalld Policy is distributed using
Administrative Templates (ADMX). Refer to chapter 20.1 in section 20.1.1
for details about Administrative Templates.

Setting up the ADMX templates for this policy is described in chapter 22
section 22.1.

19.1.1 Managing Firewalld Policy via the GPME

Open the Group Policy Management Editor (GPME) and navigate to
Computer Configuration > Policies > Administrative Templates >

Samba > Unix Settings > Firewalld.

Figure 19.1: Group Policy Management Editor

You can see we have the options to create firewall rules, and firewall zones.
For this example, we’re going to create a single rule in a new zone named
“work”.

Figure 19.2: New Zone

We’ll define our new rule as follows.

{ "work":

 [

 {

 "rule": { "family": "ipv4"},

 "source address": "172.25.1.7",

 "service name": "ftp",

 "reject": {}

 }

Figure 19.3: New Rule

19.1.1.1 Firewalld Policy Rule Definitions

The policy provides for the creation of rules and zones. Zones are defined as
a list in the Zones setting in the Firewalld policy. Existing zones on the host
will be unaffected.

]

}

Rules are defined using a JSON dictionary, containing zones paired with a
list of rules.

For example, to create rules for the Work and Home zones, specify the
following JSON:

The rule structure loosely follows the Firewalld Rich Language
Documentation. The general rule structure follows.

 {

 "work": [

 {

 "rule": {"family": "ipv4"},

 "source address": "172.25.1.7",

 "service name": "ftp",

 "reject": {}

 },

 {

 "rule": {},

 "source address": "172.25.1.8",

 "service name": "ftp",

 "reject": {}

 }

],

 "home": [

 {

 "rule": {},

 "protocol value": "icmp",

 "reject": {}

 },

 {

 "rule": {"family": "ipv4"},

 "source address": "192.168.1.2/32",

 "service name": "telnet",

 "accept": {"limit value": "1/m"}

 }

]

 }

{

 "rule": {

 "family": "ipv4 | ipv6",

 "priority": "priority"

 },

 "source [not] address | mac | ipset":

 "address[/mask] | mac-address | ipset",

 "destination [not] adress": "address[/mask]",

 "service name": "service name",

 "port": {

 "port": "port value",

 "protocol": "tcp | udp"

 }

 "protocol value": "protocol value",

 "icmp-block name": "icmptype name",

 "Masquerade": true|false,

 "icmp-type": "icmptype name",

 "forward-port": {

 "port": "port value",

 "protocol": "tcp | udp",

 "to-port": "port value",

 "to-addr": "address"

 },

 "source-port": {

 "port": "port value",

 "protocol": "tcp | udp"

 },

 "log": {

 "prefix": "prefix text",

 "level": "emerg | alert | crit | error

 | warning | notice | info | debug",

 "limit value": "rate/duration"

 },

 "audit": {

 "limit value": "rate/duration"

 },

 "accept" : {

 "limit value": "rate/duration"

 } | "reject": {

 "type": "reject type",

 "limit value": "rate/duration"

 } | "drop": {

 "limit value": "rate/duration"

 } | "mark": {

 "set": "mark[/mask]",

 "limit value": "rate/duration"

19.2 Client Side Extension

The Firewalld Client Side Extension (CSE) accepts the rules specified by the
SSE, and applies them using the firewalld command firewall-cmd. For
example, new zones are added using the firewall-cmd --permanent --new-
zone=work command. New firewall rules are added using the firewall-cmd
--permanent --zone=work --add-rich-rule 'rule family=ipv4 source

address=172.25.1.7 service name=ftp reject'.

Let’s check the Resultant Set of Policy on our Linux client.

> sudo /usr/sbin/samba-gpupdate --rsop

[sudo] password for root:

Resultant Set of Policy

Computer Policy

GPO: Default Domain Policy

===

 CSE: gp_firewalld_ext

 Policy Type: Rules

 [

 [work] =

 [

 [rule] =

 [family] = ipv4

 [source address] = 172.25.1.7

 [service name] = ftp

 [reject] =

]

]

 Policy Type: Zones

 [work]

===

Let’s now force an apply, and verify that rule gets applied.

 }

 }

> sudo /usr/sbin/samba-gpupdate --force

> sudo tdbdump /var/lib/samba/gpo.tdb -k "TESTSYSDM$" \

 | sed -r "s/\\\22/\"/g" | sed -r "s/\\\5C/\\\\/g" \

 | xmllint --xpath "//gp_ext[@name='Security/Firewalld']" - \

 | xmllint --format -

<gp_ext name="Security/Firewalld">

 <attribute name="rule:work:f480...e3a8">

 rule family=ipv4 source address=172.25.1.7

 service name=ftp reject

 </attribute>

</gp_ext>

Unfortunately, at the time of this writing, firewall-cmd appears to be unable
to list installed rich rules. We can verify that our rule has applied though by
trying to apply it again.

> sudo firewall-cmd --permanent --zone=work --add-rich-rule \

 'rule family=ipv4 source address=172.25.1.7

 service name=ftp reject'

Warning: ALREADY_ENABLED: rule family=ipv4

 source address=172.25.1.7 service name=ftp reject

success

Attempting to add the rule, we can see that firewalld warns us that the rule is
already enabled.

20 Writing Group Policy Extensions

The chapter will explain how to write a Group Policy Extension for Samba’s
Winbind. Group Policy is a delivery mechanism for distributing system
settings and company policies to machines joined to an Active Directory
domain. Unix/Linux machines running Samba’s Winbind can also deploy
these policies.

20.1 Creating the Server Side Extension

20.1.1 Administrative Templates

The first step to deploying Group Policy is to create a Server Side Extension
(SSE). There are multiple ways to create an SSE, but here we’ll only discuss
Administrative Templates (ADMX). The purpose of the SSE is to deploy
policies to the SYSVOL share. Theoretically, you could manually deploy any
file (even plain text) to the SYSVOL and then write a Client Side Extension
that parses it, but ADMX can be read and modified by the Group Policy
Management Editor, which makes administration of policies simpler.

ADMX files are simply XML files which explain to the Group Policy
Management Console how to display and store a policy in the SYSVOL.
AMDX files always store policies in Registry.pol files. Samba provides a
mechanism for parsing these, which we’ll discuss later.

Below is a simple example of an ADMX template, and it’s corresponding
ADML file.

samba.admx:

en-US/samba.adml:

<policyDefinitions revision="1.0" schemaVersion="1.0">

 <policyNamespaces>

 <using prefix="windows"

 namespace="Microsoft.Policies.Windows" />

 </policyNamespaces>

 <supersededAdm fileName="" />

 <resources minRequiredRevision="1.0" />

 <categories>

 <category name="CAT_SAMBA"

 displayName="$(string.CAT_SAMBA)" />

 <category name="CAT_UNIX_SETTINGS"

 displayName="$(string.CAT_UNIX_SETTINGS)">

 <parentCategory ref="CAT_SAMBA" />

 </category>

 </categories>

 <policies>

 <policy name="POL_DAILY_SCRIPTS" class="Machine"

 displayName="$(string.POL_DAILY_SCRIPTS)"

 explainText="$(string.POL_DAILY_SCRIPTS_Help)"

 presentation="$(presentation.POL_DAILY_SCRIPTS)"

 key="Software\Policies\Samba\Unix Settings">

 <parentCategory ref="CAT_UNIX_SETTINGS" />

 <supportedOn ref="windows:SUPPORTED_WindowsVista" />

 <elements>

 <list id="LST_DAILY_SCRIPTS"

 key="Software\Policies\Samba\

 Unix Settings\Daily Scripts"

 valueName="Daily Scripts" />

 </elements>

 </policy>

 </policies>

</policyDefinitions>

<policyDefinitionResources revision="1.0" schemaVersion="1.0">

 <displayName>

 </displayName>

 <description>

 </description>

 <resources>

 <stringTable>

 <string id="CAT_SAMBA">Samba</string>

The meaning of the various tags are explained in Microsoft’s Group Policy
documentation at https://docs.microsoft.com/en-us/previous-
versions/windows/desktop/policy/admx-schema. Before the endless
documentation and confusing XML scares you away, be aware there is an
easier way!

20.1.1.1 ADMX Migrator

FullArmor created the ADMX Migrator to simplify the shift for system
administrators from the old ADM policy templates to ADMX. Fortunately,
this tool also serves our purpose for assisting us in easily creating these
templates for our SSE. Unfortunately, the tool hasn’t seen any development
in the past 8 years, and wont run in Windows 10 (or any Unix/Linux
platform, for that matter). I had to dredge up a Windows 7 VM in order to
install and use the tool.

20.1.1.1.1 Creating the Administrative Template

1. Open ADMX Migrator

2. Right click on ADMX Templates in the left tree view, and click New
Template.

 <string id="CAT_UNIX_SETTINGS">Unix Settings</string>

 <string id="POL_DAILY_SCRIPTS">Daily Scripts</string>

 <string id="POL_DAILY_SCRIPTS_Help">

 This policy setting allows you to execute commands,

 either local or on remote storage, daily.

 </string>

 </stringTable>

 <presentationTable>

 <presentation id="POL_DAILY_SCRIPTS">

 <listBox refId="LST_DAILY_SCRIPTS">

 Script and arguments

 </listBox>

 </presentation>

 </presentationTable>

 </resources>

</policyDefinitionResources>

https://docs.microsoft.com/en-us/previous-versions/windows/desktop/policy/admx-schema

3. Give your template a name, and click OK.

4. Right click on the new template in the left tree view, and click New
Category.

5. Give the Category a name. This name will be displayed in the Group
Policy Management Editor under Administrative Templates. You can
choose to nest template under an existing category, or simply add it as a
new root.

Note: You can also add sub-categories under this category. After clicking
OK, right click the category you created and select New Category.

6. Next, create your policy by right clicking on your new category, and
selecting New Policy Setting.

7. Because we’ll be applying these settings to a Linux machine, the
Registry fields are mostly meaningless, but they are required. Your
policies will be stored under these keys on the SYSVOL in the
Registry.pol file. Choose some sensible Registry Key, such as
‘Software\Policies\Samba\Unix Settings’, and a Registry Value Name,
such as ‘Daily Scripts’ (these are the values used for Samba’s cron.daily
policy). The Display Name is the name that will be displayed for this
policy in the Group Policy Management Editor. I usually make this the
same as the Registry Value Name, but it doesn’t need to be.

8. Select whether this policy will be applied to a Machine, a User, or to
Both in the Class field. In our example, we could potentially set Both,
then our Client Side Extension would need to handle both cron.daily
scripts (the Machine) and also User crontab entries. Click OK for your
policy to be created.

9. Your new policy will appear in the middle list view. Highlight it, and
you will see a number of tabs below for configuring the policy.

10. Select the Values tab and set the Enabled Value Type. In this case, we’ll
use String, since our cron commands will be saved to the Registry.pol as
a string. In the Value field, you can set a default enabled value (this is
optional).

11. Select the Presentation tab, right click in the Elements view, and click
New Element > ListBox (or a different presentation, depending on the
policy). If you look at the samba.adml file from the previous section,
you’ll notice that the presentationTable contains a listBox item. That’s
what we’re creating here.

12. Choose an element Label, this will be the name for the list displayed in
the Group Policy Management Editor.

13. Choose a Registry Key. This will be pre-populated with the parent
Registry Key you gave when creating the policy. Append something to

the key to make it unique. We’ll use ‘Software\Policies\Samba\Unix
Settings\Daily Scripts’ for our cron.daily policy.

14. Navigate to the Explain tab, and add an explanation of what this policy
is and what it does. This will be displayed to users in the Group Policy
Management Editor.

15. Now right click on your template name in the left tree, and select Save
As.

16. Finally, you’ll need to deploy your new policy definition to the
SYSVOL. It should be saved to the Policies\PolicyDefinitions (the
Group Policy Central Store) directory. These instructions from
Microsoft can assist you in setting up your Group Policy Central Store.

20.1.2 samba-tool gpo manage

The samba-tool gpo manage command is a tool provided by the Samba team
for managing Group Policy Objects (GPOs). This command provides a
number of subcommands that allow you to add, remove, and list policies
within a GPO.

Adding subcommands to samba-tool gpo manage is one way to create a
Server Side Extension (SSE) for Group Policy. Each samba-tool gpo
manage command generally provides 3 subcommands for each policy; add,
remove, and list. These subcommands allow you to add new policies to a
GPO, remove existing policies from a GPO, and list the policies that are
currently configured in a GPO.

Group Policy SSEs should be added to samba-tool in the
python/samba/netcmd/ gpo.py file.

20.1.2.1 Subcommands

To add python subcommands using the SuperCommand class, you will need to
create a new class that inherits from the SuperCommand class, and define a
subcommands attribute that lists the subcommands that are supported by your
command. The subcommands attribute will be a dictionary containing keys
with new command names, paired with instances of Command classes which
implement the command.

For example:

Your SuperCommand will then need to be tied into an existing samba-tool
command, for example:

class cmd_scripts(SuperCommand):

 """Manage Scripts Group Policy Objects"""

 subcommands = {}

 subcommands["add"] = cmd_add_script()

 subcommands["list"] = cmd_list_script()

 subcommands["remove"] = cmd_remove_script()

class cmd_manage(SuperCommand):

 """Manage Group Policy Objects"""

 subcommands = {}

Notice that the cmd_scripts SuperCommand from earlier has been appended
to the cmd_manage list of subcommands.

20.1.2.1.1 Implementing an Add Subcommand

To write a command that adds a new policy to a Group Policy Object (GPO),
you will need to create a class that inherits from the Command class provided
by the samba.netcmd module, and define a run method that takes a series of
arguments and options, and contains the code that will be executed when the
command is run.

The run method should begin by connecting to a Domain Controller (DC)
using the smb_connection function defined in
python/samba/netcmd/gpo.py. It can then retrieve the data from the GPO’s
Registry.pol file using the loadfile method of the connection object returned
by the smb_connection function, or create a new file object if the file does
not exist.

Next, the method can parse the data in the Registry.pol file using the
ndr_unpack function from the samba.ndr module, which will return a file
object representing the data in the file. We will then add a key to the list of
entries in Registry.pol file object.

Finally, we save the modified file object back to the GPO’s Registry.pol
file on the DC using the savefile method of the connection object.

The class should also define a synopsis attribute, which provides a brief
summary of the command.

 subcommands["sudoers"] = cmd_sudoers()

 subcommands["security"] = cmd_security()

 subcommands["smb_conf"] = cmd_smb_conf()

 subcommands["symlink"] = cmd_symlink()

 subcommands["files"] = cmd_files()

 subcommands["openssh"] = cmd_openssh()

 subcommands["motd"] = cmd_motd()

 subcommands["issue"] = cmd_issue()

 subcommands["access"] = cmd_access()

 subcommands["scripts"] = cmd_scripts()

Here is an example of what it might look:

class cmd_add_script(Command):

 """Adds Script Group Policy to the sysvol

This command adds a script policy to the sysvol.

Example:

samba-tool gpo manage scripts add \

 {31B2F340-016D-11D2-945F-00C04FB984F9} MACHINE daily \

 test_script.sh '\\-n \\-p all'

policy_class is defined as either MACHINE or USER.

freq is defined as either Daily, Monthly, Weekly, or Hourly.

 """

 synopsis = "%prog <gpo> <policy_class> <freq> <script> "

 "[args] [options]"

 takes_optiongroups = {

 "sambaopts": options.SambaOptions,

 "versionopts": options.VersionOptions,

 "credopts": options.CredentialsOptions,

 }

 takes_options = [

 Option("-H", "--URL",

 help="LDB URL for database or target server",

 type=str, metavar="URL", dest="H"),

]

 takes_args = ["gpo", "policy_class", "freq", "script",

 "args?"]

 def run(self, gpo, policy_class, freq, script, args=None,

 H=None, sambaopts=None, credopts=None,

 versionopts=None):

 policy_class = policy_class.upper()

 if policy_class not in ['MACHINE', 'USER']:

 raise CommandError("'%s' is not a valid policy_class."

 " Choose from MACHINE or USER" % policy_class)

 freq = freq.title()

 if freq not in ['Daily', 'Monthly', 'Weekly', 'Hourly']:

 raise CommandError("'%s' is not a valid frequency. "

 "Choose from Daily, Monthly, Weekly, or "

 "Hourly" % freq)

 self.lp = sambaopts.get_loadparm()

 self.creds = credopts.get_credentials(self.lp,

 fallback_machine=True)

 if not os.path.exists(script):

 raise CommandError(

 "Script '%s' does not exist" % script)

 # We need to know writable DC to setup SMB connection

 if H and H.startswith('ldap://'):

 dc_hostname = H[7:]

 self.url = H

 else:

 dc_hostname = netcmd_finddc(self.lp, self.creds)

 self.url = dc_url(self.lp, self.creds, dc=dc_hostname)

 # SMB connect to DC

 conn = smb_connection(dc_hostname,

 'sysvol',

 lp=self.lp,

 creds=self.creds)

 realm = self.lp.get('realm')

 pol_file = '\\'.join([realm.lower(), 'Policies', gpo,

 '%s\\Registry.pol' % policy_class])

 try:

 pol_data = ndr_unpack(preg.file,

 conn.loadfile(pol_file))

 except NTSTATUSError as e:

 if e.args[0] in [NT_STATUS_OBJECT_NAME_INVALID,

 NT_STATUS_OBJECT_NAME_NOT_FOUND,

 NT_STATUS_OBJECT_PATH_NOT_FOUND]:

 # The file doesn't exist, so create it

 pol_data = preg.file()

 elif e.args[0] == NT_STATUS_ACCESS_DENIED:

 raise CommandError("The authenticated user does "

20.1.2.1.2 Implementing a List Subcommand

To write a command that lists the policies for a Group Policy Object (GPO),
you would need to create a class that inherits from the Command class
provided by the samba.netcmd module, and define a run method that takes a
series of arguments and options, and contains the code that will be executed
when the command is run.

The run method should begin by connecting to a Domain Controller (DC)
using the smb_connection function defined in
python/samba/netcmd/gpo.py. It can then retrieve the data from the GPO’s
Registry.pol file using the loadfile method of the connection object returned
by the smb_connection function.

 "not have sufficient privileges")

 else:

 raise

 reg_key = b'Software\\Policies\\Samba\\Unix Settings'

 keyname = b'%s\\%s Scripts' % (reg_key, get_bytes(freq))

 entry = '%s %s' % (script,

 args if args is not None else '')

 e = preg.entry()

 e.keyname = keyname

 e.valuename = reg_key

 e.type = 1

 e.data = get_bytes(entry)

 entries = list(pol_data.entries)

 entries.append(e)

 pol_data.num_entries = len(entries)

 pol_data.entries = entries

 try:

 conn.savefile(pol_file, ndr_pack(pol_data))

 except NTSTATUSError as e:

 if e.args[0] == NT_STATUS_ACCESS_DENIED:

 raise CommandError("The authenticated user does "

 "not have sufficient privileges")

 raise

Next, the method can parse the data in the Registry.pol file using the
ndr_unpack function from the samba.ndr module, which will return a file
object representing the data in the file. The method can then iterate over the
keys and values in the file object, printing out the names and data for each
key.

The class should also define a synopsis attribute, which provides a brief
summary of the command.

Here is an example of what it might look:

class cmd_list_script(Command):

 """List Script Group Policy from the sysvol

This command lists the script policies currently set on the sysvol.

Example:

samba-tool gpo manage scripts list \

 {31B2F340-016D-11D2-945F-00C04FB984F9}

 """

 synopsis = "%prog <gpo> [options]"

 takes_optiongroups = {

 "sambaopts": options.SambaOptions,

 "versionopts": options.VersionOptions,

 "credopts": options.CredentialsOptions,

 }

 takes_options = [

 Option("-H", "--URL",

 help="LDB URL for database or target server",

 type=str, metavar="URL", dest="H"),

]

 takes_args = ["gpo"]

 def run(self, gpo, H=None, sambaopts=None, credopts=None,

 versionopts=None):

 self.lp = sambaopts.get_loadparm()

 self.creds = credopts.get_credentials(self.lp,

 fallback_machine=True)

 # We need to know writable DC to setup SMB connection

 if H and H.startswith('ldap://'):

 dc_hostname = H[7:]

 self.url = H

 else:

 dc_hostname = netcmd_finddc(self.lp, self.creds)

 self.url = dc_url(self.lp, self.creds, dc=dc_hostname)

 # SMB connect to DC

 conn = smb_connection(dc_hostname,

 'sysvol',

 lp=self.lp,

 creds=self.creds)

 realm = self.lp.get('realm')

 pol_file = '\\'.join([realm.lower(), 'Policies', gpo,

 '%s\\Registry.pol'])

 for policy_class in ['MACHINE', 'USER']:

 self.outf.write('%s:\n' % policy_class)

 try:

 pol_data = ndr_unpack(preg.file,

 conn.loadfile(pol_file % policy_class))

 except NTSTATUSError as e:

 if e.args[0] in [NT_STATUS_OBJECT_NAME_INVALID,

 NT_STATUS_OBJECT_NAME_NOT_FOUND,

 NT_STATUS_OBJECT_PATH_NOT_FOUND]:

 # The file doesn't exist,

 # so there is nothing to list

 continue

 elif e.args[0] == NT_STATUS_ACCESS_DENIED:

 raise CommandError("The authenticated user "

 "does not have sufficient privileges")

 else:

 raise

 reg_key = 'Software\\Policies\\Samba\\Unix Settings'

 for e in pol_data.entries:

 if e.valuename == "**delvals.":

 continue

20.1.2.1.3 Implementing a Remove Subcommand

To write a command that removes a policy from a Group Policy Object
(GPO), you would need to create a class that inherits from the Command class
provided by the samba.netcmd module, and define a run method that takes a
series of arguments and options, and contains the code that will be executed
when the command is run.

The run method should begin by connecting to a Domain Controller (DC)
using the smb_connection function defined in
python/samba/netcmd/gpo.py. It can then retrieve the data from the GPO’s
Registry.pol file using the loadfile method of the connection object returned
by the smb_connection function.

Next, the method can parse the data in the Registry.pol file using the
ndr_unpack function, which will return a file object representing the data in
the file. It then checks whether the entry specified in the “script” variable
exists in the list of entries contained in the pol_data object. If the entry does
exist, it is removed from the list and the number of entries in the list is
updated.

Finally, we save the modified file object back to the GPO’s Registry.pol
file on the DC using the savefile method of the connection object.

The class should also define a synopsis attribute, which provides a brief
summary of the command.

Here is an example of what it might look:

 if e.keyname.startswith(reg_key) and \

 e.keyname.endswith('Scripts'):

 self.outf.write("\t%s:\n" % e.keyname)

 self.outf.write("\t\t%s\n" % e.data)

class cmd_remove_script(Command):

 """Removes Script Group Policy from the sysvol

This command removes a script policy from the sysvol.

Example:

samba-tool gpo manage scripts remove \

 {31B2F340-016D-11D2-945F-00C04FB984F9} MACHINE daily \

 'test_script.sh \\-n \\-p all'

policy_class is defined as either MACHINE or USER.

freq is defined as either Daily, Monthly, Weekly, or Hourly.

 """

 synopsis = "%prog <gpo> <policy_class> <freq> <script>"

 "[options]"

 takes_optiongroups = {

 "sambaopts": options.SambaOptions,

 "versionopts": options.VersionOptions,

 "credopts": options.CredentialsOptions,

 }

 takes_options = [

 Option("-H", "--URL",

 help="LDB URL for database or target server",

 type=str, metavar="URL", dest="H"),

]

 takes_args = ["gpo", "policy_class", "freq", "script"]

 def run(self, gpo, policy_class, freq, script, H=None,

 sambaopts=None, credopts=None, versionopts=None):

 policy_class = policy_class.upper()

 if policy_class not in ['MACHINE', 'USER']:

 raise CommandError("'%s' is not a valid policy_class."

 " Choose from MACHINE or USER" % policy_class)

 freq = freq.title()

 if freq not in ['Daily', 'Monthly', 'Weekly', 'Hourly']:

 raise CommandError("'%s' is not a valid frequency. "

 "Choose from Daily, Monthly, "

 "Weekly, or Hourly" % freq)

 self.lp = sambaopts.get_loadparm()

 self.creds = credopts.get_credentials(self.lp,

 fallback_machine=True)

 # We need to know writable DC to setup SMB connection

 if H and H.startswith('ldap://'):

 dc_hostname = H[7:]

 self.url = H

 else:

 dc_hostname = netcmd_finddc(self.lp, self.creds)

 self.url = dc_url(self.lp, self.creds, dc=dc_hostname)

 # SMB connect to DC

 conn = smb_connection(dc_hostname,

 'sysvol',

 lp=self.lp,

 creds=self.creds)

 realm = self.lp.get('realm')

 pol_file = '\\'.join([realm.lower(), 'Policies', gpo,

 '%s\\Registry.pol' % policy_class])

 try:

 pol_data = ndr_unpack(preg.file,

 conn.loadfile(pol_file))

 except NTSTATUSError as e:

 if e.args[0] in [NT_STATUS_OBJECT_NAME_INVALID,

 NT_STATUS_OBJECT_NAME_NOT_FOUND,

 NT_STATUS_OBJECT_PATH_NOT_FOUND]:

 raise CommandError("Cannot remove script '%s' "

 "because it does not exist" % script)

 elif e.args[0] == NT_STATUS_ACCESS_DENIED:

 raise CommandError("The authenticated user does "

 "not have sufficient privileges")

 else:

 raise

 script = script.strip()

 if script in ([e.data.strip() for e in pol_data.entries] \

 if pol_data else []):

 entries = [e for e in pol_data.entries \

 if e.data.strip() != script]

 pol_data.num_entries = len(entries)

 pol_data.entries = entries

20.2 Creating the Client Side Extension

The following script defines a Group Policy Client Side Extension (CSE) in
Python, which will be called by Samba’s Winbind to deploy our newly
created policy. A CSE is a program that runs on a client machine and
processes Group Policy Objects (GPOs) that are applied to the machine. The
CSE processes the GPOs by applying the policies they contain to the client
machine.

 try:

 conn.savefile(pol_file, ndr_pack(pol_data))

 except NTSTATUSError as e:

 if e.args[0] == NT_STATUS_ACCESS_DENIED:

 raise CommandError("The authenticated user "

 "does not have sufficient"

 " privileges")

 raise

 else:

 raise CommandError("Cannot remove '%s' because it"

 " does not exist" % script)

#!/usr/bin/python3

import os, re

from samba.gpclass import gp_pol_ext, gp_file_applier,

 register_gp_extension, unregister_gp_extension,

 list_gp_extensions

from tempfile import NamedTemporaryFile

from samba.gp.util.logging import log

from samba import getopt as options

import optparse

intro = '''

autogenerated by samba

#

This file is generated by the gp_scripts_ext Group Policy

Client Side Extension. To modify the contents of this file,

modify the appropriate Group Policy objects which apply

to this machine. DO NOT MODIFY THIS FILE DIRECTLY.

#

'''

class gp_scripts_ext(gp_pol_ext, gp_file_applier):

 def __str__(self):

 return 'Unix Settings/Scripts'

 def process_group_policy(self, deleted_gpo_list,

 changed_gpo_list):

 # Iterate over GPO guids and their previous settings,

 # reverting changes made by this GPO.

 for guid, settings in deleted_gpo_list:

 # Use the unapply() function from the base class

 # gp_file_applier to remove the files.

 if str(self) in settings:

 for attribute, script in \

 settings[str(self)].items():

 # Delete the applied policy

 self.unapply(guid, attribute, script)

 # Iterate over GPO objects, applying new policies found

 # in the SYSVOL

 for gpo in changed_gpo_list:

 if gpo.file_sys_path:

 reg_key = 'Software\\Policies\\' + \

 'Samba\\Unix Settings'

 sections = { '%s\\Daily Scripts' % reg_key :

 '/etc/cron.daily',

 '%s\\Monthly Scripts' % reg_key :

 '/etc/cron.monthly',

 '%s\\Weekly Scripts' % reg_key :

 '/etc/cron.weekly',

 '%s\\Hourly Scripts' % reg_key :

 '/etc/cron.hourly'

 }

 # Load the contents of the Registry.pol

 # from the SYSVOL

 pol_file = 'MACHINE/Registry.pol'

 path = os.path.join(gpo.file_sys_path, pol_file)

 pol_conf = self.parse(path)

 if not pol_conf:

 continue

 # Gather the list of policies to apply

 policies = {}

 for e in pol_conf.entries:

 if e.keyname in sections.keys() and \

 e.data.strip():

 if e.keyname not in policies:

 policies[e.keyname] = []

 policies[e.keyname].append(e.data)

 # Specify the applier function, which will be

 # used to apply the policy.

 def applier_func(keyname, entries):

 ret = []

 cron_dir = sections[e.keyname]

 for data in entries:

 with NamedTemporaryFile(prefix='gp_',

 mode="w+",

 delete=False,

 dir=cron_dir) as f:

 contents = '#!/bin/sh\n%s' % intro

 contents += '%s\n' % data

 f.write(contents)

 os.chmod(f.name, 0o700)

 ret.append(f.name)

 return ret

 # For each policy in the Registry.pol,

 # apply the settings

 for keyname, entries in policies.items():

 # Each GPO applies only one set of each type

 # of script, so so the attribute matches the

 # keyname.

 attribute = keyname

 # The value hash is generated from the script

 # entries, ensuring any changes to this GPO

 # will cause the scripts to be rewritten.

 value_hash = self.generate_value_hash(*entries)

 self.apply(gpo.name, attribute, value_hash,

 applier_func, keyname, entries)

 # Cleanup any old scripts that are no longer

 # part of the policy

 self.clean(gpo.name, keep=policies.keys())

 def rsop(self, gpo):

 output = {}

 pol_file = 'MACHINE/Registry.pol'

 if gpo.file_sys_path:

 path = os.path.join(gpo.file_sys_path, pol_file)

 pol_conf = self.parse(path)

 if not pol_conf:

 return output

 for e in pol_conf.entries:

 key = e.keyname.split('\\')[-1]

 if key.endswith('Scripts') and e.data.strip():

 if key not in output.keys():

 output[key] = []

 output[key].append(e.data)

 return output

if __name__ == "__main__":

 parser = optparse.OptionParser('gp_scripts_ext.py [options]')

 sambaopts = options.SambaOptions(parser)

 parser.add_option_group(sambaopts)

 parser.add_option('--register',

 help='Register extension to Samba',

 action='store_true')

 parser.add_option('--unregister',

 help='Unregister extension from Samba',

 action='store_true')

 (opts, args) = parser.parse_args()

 # We're collecting the Samba loadparm simply to

 # find our smb.conf file

 lp = sambaopts.get_loadparm()

 # This is a random unique GUID, which identifies this CSE.

 # Any random GUID will do.

The CSE is defined by the gp_scripts_ext class, which is derived from the
gp_pol_ext and gp_file_applier classes. The gp_pol_ext class provides a
framework for processing GPOs, and the gp_file_applier class provides
functions for applying GPO policies to files on the client machine.

20.2.1 The gp_ext and gp_applier Python Classes

Your CSE must be a class that inherits from subclasses of gp_ext and
gp_applier. The gp_pol_ext is a subclass of gp_ext that provides simplified
parsing of Registry.pol files. If you choose to store your policies in ini/inf
files in the SYSVOL (instead of using Administrative Templates), then you
can inherit from the gp_inf_ext instead. The gp_file_applier is a subclass
of gp_applier which provides convenience functions for applying and
unapplying policies which add files to the machine.

If your class inherits from either gp_pol_ext or gp_inf_ext, it has a parse()

 ext_guid = '{5930022C-94FF-4ED5-A403-CFB4549DB6F0}'

 if opts.register:

 # The extension path is the location of this file. This

 # script should be executed from a permanent location.

 ext_path = os.path.realpath(__file__)

 # The machine and user parameters tell Samba whether to

 # apply this extension to the computer, to individual

 # users, or to both.

 register_gp_extension(ext_guid, 'gp_scripts_ext',

 ext_path, smb_conf=lp.configfile,

 machine=True, user=False)

 elif opts.unregister:

 # Remove the extension and do not apply policy.

 unregister_gp_extension(ext_guid)

 # List the currently installed Group Policy Client Side

 # Extensions

 exts = list_gp_extensions(lp.configfile)

 for guid, data in exts.items():

 print(guid)

 for k, v in data.items():

 print('\t%s: %s' % (k, v))

function defined, which takes a single filename. The parse() function will
parse the contents of the policy file and return it in a sensible format.

If for some reason you choose to store data on the SYSVOL in some other
format (such as in XML, etc), you’ll need to subclass gp_ext, then implement
a read() function, like this:

The read() function is called by parse(), passing it a local filename tied to
the systems SYSVOL cache. Then within process_group_policy() you can
call parse() to fetch the parsed data from the SYSVOL.

The gp_file_applier class implements the helper functions apply and
unapply. If you instead inherit from gp_applier directly, you’ll need to
implement apply and unapply yourself. The gp_applier class provides
various helper functions for assisting you in creating the apply and unapply
functions. The apply and unapply functions are responsible for both adding
and removing policy, as well as managing the Group Policy Cache contents.

20.2.2 Process Group Policy

The CSE has two main functions: process_group_policy and rsop. The
process_group_policy function is called by the Group Policy engine on the
client machine to process the GPOs that apply to the machine. It takes two
arguments: deleted_gpo_list and changed_gpo_list. The
deleted_gpo_list argument is a list of GPOs that MUST be removed from
the machine, and the changed_gpo_list argument is a list of GPOs that have
been changed (or are new) and MUST be re-applied to the machine.

The process_group_policy function serves two primary purposes; it applies
new policy, and it removes old policy. It first iterates over the
deleted_gpo_list, using the unapply function from the gp_file_applier
class to remove the files that were applied by the GPOs.

import xml.etree.ElementTree

class gp_xml_ext(gp_ext):

 def read(self, data_file):

 return xml.etree.ElementTree.parse(data_file)

The deleted_gpo_list is a dictionary which contains the guids of Group
Policy Objects, with associated settings which were previously applied. This
list of applied settings is generated by the second loop (changed_gpo_list)
while it is applying policy.

The process_group_policy function then iterates over the
changed_gpo_list, applying the policies contained in the GPOs to the client
machine. This second loop is a little more involved. When we iterate over
changed_gpo_list, we’re actually iterating over a list of GPO objects. The
attributes of the object are:

gpo.name: The GUID of the GPO.
gpo.file_sys_path: A physical path to a cache of GPO on the local
filesystem.

There are other methods and attributes, but these are the only ones important
to a CSE.

The primary purpose of this loop is to iterate over the GPOs, read their policy
in the SYSVOL, then check the sections for the Registry Key we created in
our Server Side Extension. If our policy Registry Key exists, then we read the
entry and apply the policy.

In our example, we find the ‘Software\Policies\Samba\Unix Settings\Daily
Scripts’ policy, then read the script contents from Registry.pol entry and
write the script to a local file.

The applier_func function is called to apply the policies contained in the
GPOs to the client machine. It takes two arguments: keyname and entries.
The keyname argument is the name of the policy being applied, and the
entries argument is a list of the policy entries. The function writes the policy
entries to randomly generated file names in the appropriate cron directories
on the client machine, and returns the names of the temporary files. The file
names will be stored in the Group Policy Cache, for retrieving later for the

for guid, settings in deleted_gpo_list:

 if str(self) in settings:

 for attribute, script in settings[str(self)].items():

 self.unapply(guid, attribute, script)

deleted_gpo_list.

20.2.3 Resultant Set of Policy

The rsop function in the extension is optional. It should return a dictionary
containing key/value pairs of what our current policy will apply or has
applied. The function is passed a list of GPO objects (similar to our
changed_gpo_list), and we should parse the list similar to how we did in
process_group_policy.

The rsop function generates the output for our Resultant Set of Policy. RSoP
is a feature in Group Policy that allows you to determine the effective settings
that are applied to a user or a computer as a result of Group Policy
processing. RSoP provides a report that shows the policies that have been
applied to the user or computer, as well as any conflicts or errors that may
have occurred during Group Policy processing. RSoP can be used to
troubleshoot Group Policy issues, to verify that the correct policies are being
applied, and to determine the impact of Group Policy on a particular user or
computer.

This function enables the samba-gpupdate --rsop command (see Chapter
23.1).

20.2.4 Registering/Unregistering a Client Side Extension

The CSE also includes a function for registering and unregistering the CSE
with the Group Policy engine on the client machine. While the example code
provides a detailed example of how to register an extension, the basic
requirement is simply to call register_gp_extension().

The extension guid can be any random guid. It simply must be unique among
all extensions that you register to the host. The extension path is literally just
the path to the source file containing your CSE.

ext_guid = '{5930022C-94FF-4ED5-A403-CFB4549DB6F0}'

ext_path = os.path.realpath(__file__)

register_gp_extension(ext_guid, 'gp_scripts_ext', ext_path,

 smb_conf='/etc/samba/smb.conf', machine=True, user=False)

You must pass your smb.conf file to the extension, so it knows where to store
the list of registered extensions. You also must specify whether to apply this
extension to the machine, or to individual users (or to both).

Unregistering the extension is simple. You call the
unregister_gp_extension() and pass it the unique guid you previously
chose which represents this CSE.

20.2.4.1 Registering/Unregistering a Client Side Extension via samba-
tool

Alternatively, as of Samba 4.18, Client Side Extension registration can be
managed using samba-tool.

The samba-tool gpo cse register command is used to register a Group
Policy Client Side Extension (CSE) on a Linux client. The command takes
two arguments: the path to the CSE file and the name of the CSE. It also
accepts two options: --machine or --user. The command does not enable the
CSE for either Machine or User policy by default.

To enable a CSE for Machine policy, you must use the --machine option
when running the samba-tool gpo cse register command. For example, to
register a CSE file located at /root/policies/gp_test_ext.py with the
name gp_test_ext and enable it for Machine policy, the command would be:

samba-tool gpo cse register /root/policies/gp_test_ext.py \

 gp_test_ext --machine

When registering a CSE, samba-tool will automatically generate a unique
random GUID to identify the extension. To find the unique GUID of your
extension, you can use the samba-tool gpo cse list command.

The output of the samba-tool gpo cse list command shows the GUID of
the CSE, the file name, the extension name, and whether machine policy or
user policy are enabled. For example:

> samba-tool gpo cse list

UniqueGUID : {5d159033-f613-4a60-90e7-87e0f6847fbf}

FileName : /root/policies/gp_test_ext.py

ProcessGroupPolicy : gp_test_ext

MachinePolicy : True

UserPolicy : False

To unregister a CSE, the samba-tool gpo cse unregister command is
used, with the unique GUID of the CSE as the argument. For example, to
unregister a CSE with the GUID {5d159033-f613-4a60-90e7-87e0f6847fbf},
the command would be:

samba-tool gpo cse unregister \

 {5d159033-f613-4a60-90e7-87e0f6847fbf}

Note that the above commands are run on the Linux client machine (not from
a Samba ADDC), and must be executed as the root user.

These commands are useful for registering custom CSEs, but can also be
utilized to backport CSEs from newer versions of Samba. For example, if
you’d like to utilize the Chrome policy which isn’t available in the installed
version of Samba, you can fetch the python/samba/gp/gp_chromium_ext.py
file from the Samba master branch, then activate the policy via:

wget bit.ly/3H3vMba -O /root/policies/gp_chromium_ext.py

samba-tool gpo cse register /root/policies/gp_chromium_ext.py \

 gp_chrome_ext --machine

samba-tool gpo cse register /root/policies/gp_chromium_ext.py \

 gp_chromium_ext --machine

Notice that we ran the register command twice. This is because the
gp_chromium_ext.py contains two CSEs, gp_chrome_ext and
gp_chromium_ext.

21 Modifying a Registry.pol File
21.1 Using samba-tool

Samba provides the samba-tool gpo load, samba-tool gpo remove and
samba-tool gpo show commands for manipulating Registry.pol policies.
These commands format the registry policies as json to simplify the process.
For example, a policy which sets the Firefox homepage would like like so:

To set this policy on a GPO, we either put it in a file, or pass it samba-tool
gpo load in standard input.

> sudo samba-tool gpo load -UAdministrator --content=test.json

21.2 Scripting with python

Samba provides python libraries for manipulating a Registry.pol on Linux.
The following python code snippet demonstrates how to open one of these
files.

[

 {

 "keyname": "Software\\Policies\\Mozilla\\Firefox\\Homepage",

 "valuename": "StartPage",

 "class": "MACHINE",

 "type": "REG_SZ",

 "data": "homepage"

 },

 {

 "keyname": "Software\\Policies\\Mozilla\\Firefox\\Homepage",

 "valuename": "URL",

 "class": "MACHINE",

 "type": "REG_SZ",

 "data": "samba.org"

 }

]

The parsed file contains a list of entries, which you can iterate over. Each
entry contains a keyname, valuename, and data.

Writing to the pol_conf can be tricky. If you write the length of the entries
prior to writing the entries, it will actually cause memory corruption (this is a
bug). So ensure you write to the entries, then to the length. You can create an
entry using the preg import from samba.dcerpc.

The data type refers to Microsoft defined registry types:

Registry.type.name Registry.type.value
REG_NONE 0
REG_SZ 1
REG_EXPAND_SZ 2
REG_BINARY 3
REG_DWORD 4
REG_DWORD_BIG_ENDIAN 5

from samba.ndr import ndr_unpack

from samba.dcerpc import preg

raw = open('Registry.pol', 'rb').read()

pol_conf = ndr_unpack(preg.file, raw)

for e in pol_conf.entries:

 print(e.keyname, e.valuename, e.data)

e = preg.entry()

e.keyname = b'Software\\Policies\\Samba\\smb_conf'

e.valuename = b'apply group policies'

e.type = 4 # REG_DWORD, an integer

e.data = 1

entries = list(pol_data.entries)

entries.append(e)

pol_data.entries = entries

Ensure you set the new num_entries last

pol_data.num_entries = len(entries)

REG_LINK 6
REG_MULTI_SZ 7
REG_RESOURCE_LIST 8
REG_QWORD 11

To write your changes back to the Registry.pol file, you’ll use the following:

from samba.ndr import ndr_pack

with open('Registry.pol', 'wb') as w:

 w.write(ndr_pack(pol_data))

22 Installing Administrative
Templates
Administrative Templates allow you to define policies that can be
administered from the Group Policy Management Editor.

The samba-tool gpo admxload command copies ADMX templates to the
<domain>/Policies/PolicyDefinitions directory on the SYSVOL share.
After installing any ADMX templates, you MUST install Microsoft’s ADMX
templates also, otherwise you will be unable to administer Windows domain
members (see section 22.4).

The following is instructions on how to obtain and install the various ADMX
templates that are used by Samba.

22.1 Install Samba ADMX Templates

The Samba ADMX templates are available in the Samba source tree, and can
be downloaded from https://download.samba.org/pub/samba/samba-
latest.tar.gz, and can then be installed using the samba-tool gpo admxload
command.

> tar -xf samba-latest.tar.gz

> samba-tool gpo admxload \

 --admx-dir=./samba-4.18.0/libgpo/admx -UAdministrator

Warning: There are several bugs in the GNOME Settings ADMX templates
in Samba versions less than 4.18, which prevents them from being displayed
in some versions of the Group Policy Management Editor (GPME). Please
use the templates from a newer version of the Samba sources.

22.2 Installing Firefox ADMX Templates

Download the Firefox ADMX templates from

https://download.samba.org/pub/samba/samba-latest.tar.gz

https://github.com/mozilla/policy-templates/releases, then extract and install
them to your SYSVOL using the samba-tool gpo admxload command.

> tar -xf v4.4.tar.gz

> samba-tool gpo admxload \

 --admx-dir=./policy-templates-4.4/windows -UAdministrator

22.3 Installing Chromium ADMX Templates

Download the Chromium ADMX templates from
https://support.google.com/chrome/a/answer/187202, then extract and install
them to your SYSVOL using the samba-tool gpo admxload command.

> unzip policy_templates.zip

> samba-tool gpo admxload --admx-dir=./windows/admx \

 -UAdministrator

22.4 Installing Windows ADMX Templates

Download the Windows ADMX templates from
https://www.microsoft.com/en-us/download/102157, then extract and install
them to your SYSVOL using the samba-tool gpo admxload command.

> msiextract Administrative\ Templates\ \(.admx\)\ for\

 Windows\ 10\ October\ 2020\ Update.msi

> cd ./Program\ Files/Microsoft\ Group\ Policy

> cd Windows\ 10\ October\ 2020\ Update\ \(20H2\)

> samba-tool gpo admxload --admx-dir=./PolicyDefinitions \

 -UAdministrator

https://github.com/mozilla/policy-templates/releases
https://support.google.com/chrome/a/answer/187202
https://www.microsoft.com/en-us/download/102157

23 Automatic Policy Refresh
The samba-gpupdate command is typically executed on a regular interval
between 90 and 120 minutes in order to ensure that all policy settings are up
to date. This interval is known as the Group Policy refresh interval.

There are two main ways that the samba-gpupdate command can be executed
automatically on a regular basis: via winbind or by oddjob-gpupdate.
Regardless of which method is used, the samba-gpupdate command is
automatically executed on a regular basis to ensure that all policy settings are
up to date. This helps to ensure that all users and computers in the network
are following the same set of policies and helps to prevent issues with policy
inconsistencies.

23.1 The samba-gpupdate command

The samba-gpupdate command is used to refresh Group Policy settings on an
Active Directory domain member. Group Policy allows an administrator to
specify settings for users and computers in an Active Directory domain.
When these settings are changed, the samba-gpupdate command can be used
to apply the changes on the domain member.

To use the samba-gpupdate command, open a terminal window and simply
type the following:

samba-gpupdate

This will refresh all Group Policy settings on the local machine. You can also
specify specific options to refresh only certain settings. For example, to
refresh only the computer settings, you can use the --force option:

samba-gpupdate --force

To refresh only the user settings, use the --force option combined with the -
-target and -U options to specify the user:

samba-gpupdate --force --target=User -U tux

To unapply Group Policy settings, you can use the --unapply option:

samba-gpupdate --unapply

To print the Resultant Set of Policy (RSOP) for a particular target, you can
use the --rsop option:

samba-gpupdate --rsop --target=Computer

It is important to note that the samba-gpupdate command can only be used
on a machine that is a member of an Active Directory domain. It will not
work on a standalone machine or on a machine that is part of a different type
of domain.

23.2 Automatic Policy Refresh via winbind

To configure winbind Automatic Policy Refresh, you will set the apply
group policies smb.conf parameter.

To set this parameter manually, you will need to add the following line to the
global section of the smb.conf file:

This will enable winbind to automatically apply Group Policy settings on the
Group Policy refresh interval.

Alternatively, you can deploy this setting automatically using smb.conf
Group Policies. See chapter 5 section 5.1 for instructions how to deploy this
setting via Group Policy. The samba-gpupdate command will need to be
executed manually to deploy this setting the first time.

23.3 Automatic Policy Refresh via oddjob-gpupdate

Using oddjob-gpupdate to provide Automatic Policy Refresh allows you to
run Samba’s Group Policy with the System Security Services Daemon

apply group policies = Yes

(SSSD). SSSD is a system service that provides access to remote identity and
authentication providers, such as Active Directory.

To install oddjob-gpupdate, you’ll need to find the appropriate packages for
your distribution. In openSUSE, for example, you can install oddjob-
gpupdate via:

sudo zypper in oddjob oddjob-gpupdate

Some distributions may not have oddjob-gpupdate packaged, in which case
you can build the sources from https://github.com/openSUSE/oddjob-
gpupdate.

Beware that the package named oddjob-gpupdate in the ALT Linux
distribution is not the correct package. This package is meant for Group
Policy application using ALT Linux’s custom Group Policy implementation.

After installing oddjob-gpupdate, you can start and enable the oddjob service
to begin refreshing policy.

sudo systemctl enable oddjobd

sudo systemctl start oddjobd

Once the oddjobd service is running, it will automatically execute the oddjob-
gpupdate command on the Group Policy refresh interval to update user and
computer Group Policies.

https://github.com/openSUSE/oddjob-gpupdate

	Group Policy on Linux
	1 Preface
	2 About the Author
	3 Introduction
	3.1 What’s the difference between Group Policy and a Group Policy Object?
	3.2 Server Side Extensions
	3.2.1 Enabling Group Policy Server Side Extensions on the Server

	3.3 Client Side Extensions
	3.3.1 Enabling Group Policy Client Side Extensions on the Linux Client
	3.3.2 Resultant Set of Policy

	3.4 Policies Introduced in this Book
	3.4.1 smb.conf Policies
	3.4.2 Password and Kerberos Policies
	3.4.3 Script Policies
	3.4.4 Startup Script Policies
	3.4.5 Files Policy
	3.4.6 Symlink Policies
	3.4.7 Sudoers Policies
	3.4.8 Message Policies
	3.4.9 PAM Access Policies
	3.4.10 Certificate Auto Enrollment
	3.4.11 Firefox Policy
	3.4.12 Chromium/Chrome Policy
	3.4.13 GNOME Settings
	3.4.14 OpenSSH Policy
	3.4.15 Firewalld Policy

	4 Managing Group Policies
	4.1 Opening a Group Policy Object in the Group Policy Management Console
	4.2 Creating a Group Policy Object
	4.2.1 samba-tool
	4.2.2 GPMC

	4.3 Deleting a Group Policy Object
	4.3.1 samba-tool
	4.3.2 GPMC

	4.4 Listing a Group Policy
	4.5 Modifying a Group Policy

	5 smb.conf Policies
	5.1 Server Side Extension
	5.1.1 Managing smb.conf Policies via the GPME
	5.1.2 Managing smb.conf Policies via samba-tool

	5.2 Client Side Extension

	6 Password and Kerberos Policies
	6.1 Server Side Extension
	6.1.1 Managing Password and Kerberos Policies via the GPME
	6.1.2 Managing Password and Kerberos Policies via samba-tool

	6.2 Client Side Extension

	7 Script Policies
	7.1 Server Side Extension
	7.1.1 Managing Machine Scripts Policies via the GPME
	7.1.2 Managing User Scripts Policies via the GPME

	7.2 Client Side Extension

	8 Startup Script Policies
	8.1 Server Side Extension
	8.1.1 Managing Startup Script Policies via samba-tool

	8.2 Client Side Extension

	9 Files Policy
	9.1 Server Side Extension
	9.1.1 Managing the Files Policy via samba-tool

	9.2 Client Side Extension

	10 Symlink Policies
	10.1 Server Side Extension
	10.1.1 Managing the Symlink Policy via samba-tool

	10.2 Client Side Extension

	11 Sudoers Policies
	11.1 Server Side Extension
	11.1.1 Managing Sudoers Policy via the GPME
	11.1.2 Managing Sudoers Policy via samba-tool

	11.2 Client Side Extension

	12 Message Policies
	12.1 Server Side Extension
	12.1.1 Managing Message Policy via the GPME
	12.1.2 Managing Message Policy via samba-tool

	12.2 Client Side Extension

	13 PAM Access Policies
	13.1 Server Side Extension
	13.1.1 Managing PAM Access Policies via samba-tool

	13.2 Client Side Extension

	14 Certificate Auto Enrollment Policy
	14.1 Server Side Extension
	14.1.1 Managing Certificate Auto Enrollment via the GPME
	14.1.2 Certificate Templates

	14.2 Client Side Extension
	14.2.1 Trouble Shooting Certificates

	15 Firefox Policy
	15.1 Server Side Extension
	15.2 Managing Firefox Policy via the GPME
	15.3 Client Side Extension

	16 Chromium/Chrome Policy
	16.1 Server Side Extension
	16.1.1 Managing Chromium Policy via the GPME

	16.2 Client Side Extension

	17 GNOME Settings Policy
	17.1 Server Side Extension
	17.1.1 Managing GNOME Settings Policy via the GPME

	17.2 Client Side Extension

	18 OpenSSH Policy
	18.1 Server Side Extension
	18.1.1 Managing OpenSSH Policy via samba-tool

	18.2 Client Side Extension

	19 Firewalld Policy
	19.1 Server Side Extension
	19.1.1 Managing Firewalld Policy via the GPME

	19.2 Client Side Extension

	20 Writing Group Policy Extensions
	20.1 Creating the Server Side Extension
	20.1.1 Administrative Templates
	20.1.2 samba-tool gpo manage

	20.2 Creating the Client Side Extension
	20.2.1 The gp_ext and gp_applier Python Classes
	20.2.2 Process Group Policy
	20.2.3 Resultant Set of Policy
	20.2.4 Registering/Unregistering a Client Side Extension

	21 Modifying a Registry.pol File
	21.1 Using samba-tool
	21.2 Scripting with python

	22 Installing Administrative Templates
	22.1 Install Samba ADMX Templates
	22.2 Installing Firefox ADMX Templates
	22.3 Installing Chromium ADMX Templates
	22.4 Installing Windows ADMX Templates

	23 Automatic Policy Refresh
	23.1 The samba-gpupdate command
	23.2 Automatic Policy Refresh via winbind
	23.3 Automatic Policy Refresh via oddjob-gpupdate

