

[image:]

[image:]

Additional Resources

[image:]

[image:]

OceanofPDF.com

Ten Steps to Linux

Survival

Essentials for Navigating the Bash Jungle

James Lehmer

OceanofPDF.com

Ten Steps to Linux Survival

by James Lehmer

Copyright © 2016 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available

for most titles (http://safaribooksonline.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Dawn Schanafelt

Acquisitions Editor: Susan Conant

Production Editor: Shiny Kalapurakkel

Copyeditor: Sharon Wilkey

Proofreader: Molly Ives Brower

Interior Designer: David Futato

Cover Designer: Randy Comer

Illustrator: Rebecca Panzer

June 2016: First Edition

Revision History for the First Edition

2016-05-27: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Ten Steps to Linux Survival, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-491-95918-3

[LSI]

OceanofPDF.com

Introduction

And you may ask yourself, “Well, how did I get here?”

—Talking Heads, “Once in a Lifetime”

Why Are We Here?

This report grew out of a series of “lunch-and-learns” on Linux that I compiled for work. During that process, I

ended up writing an ebook, and then condensing it into a one-hour presentation that focuses on the essentials needed for quick problem-solving on a Linux system. I

turned that presentation into an O’Reilly webcast, and this report provides more details on those original 10 essentials.

Even in formerly “pure Windows” shops, Linux use is growing. Linux systems are everywhere! They may appear as appliances (machines) or, more likely, virtual machine (VM) images dropped in by a vendor.

Common examples of Linux systems that may appear in your shop as VMs or in the cloud include the following:

Web servers

Apache, Nginx, Node.js

Database servers

MongoDB, PostgreSQL

Mobile device management

Various MDM solutions, such as MobileIron

Security and monitoring systems

Security information and event management (SIEM)

systems, network sniffers

Source-code control systems

Git or Mercurial

As Linux use continues to grow, you need to know the basics. One day you might be the only one in the office when things go south, and you’ll have to fix them—fast. This guide will help.

In this report, I focus on diagnosing problems and getting a system back up. I don’t cover these topics:

Modifying the system, other than restarting

Forensics, other than looking at logs

Shell scripting

Distro differences—for example, Ubuntu versus CentOS

Anything in depth, as this is just to get your feet wet

Who Is This For?

The intended audience of this book is not seasoned Linux administrators, or anyone with a passing knowledge of the Bash shell. Instead, it is for people who are working in small Windows shops, where everyone has to wear various hats. It is for Windows administrators, network admins, developers, and the like who have no knowledge of Linux but may still have to jump in during a problem. Imagine your boss rushing into your office and saying this:

The main www site is down, and all the people who know

about it are out. It’s running on some sort of Linux, I

think, and the credentials and IP address are scrawled on

this sticky note. Can you get in, poke around, and see if

you can figure it out?

In this report, you’ll learn the basic steps to finding vital information that can help you quickly get the site back up. By reading this guide before disaster strikes, you will be better able to survive the preceding scenario.

How to Prepare

In small shops, sometimes things just fall on you because no one else is available. There is often no room for “It’s not my job” when production is down and the one person who knows about it is backpacking in Colorado. So you need to be prepared as the use of Linux becomes more prevalent, turning “pure Microsoft” shops more and more into hybrids. Linux is coming, whether you like it or not. Be prepared.

First, pay close attention whenever you hear the word appliance used in terms of a system. Perhaps it will be mentioned in passing in a vendor presentation. Dig in and find out what the appliance image is running.

Second, note that even Microsoft is supporting Linux, and increasing that support daily. First, it started with making Linux systems first-class citizens on Azure. Now Microsoft is partnering with Docker and Ubuntu and others, and that coordination looks like it is only going to grow.

So now is the time to start studying. This report is a quick-help guide to prepare you for limited diagnostic and recovery tasks, and to get you used to how Linux commands work. But you should dig further.

One place to turn next is my ebook. It helps you take the next steps of understanding how to change Linux systems in basic ways. I’ve also included some useful references at

the end of this report. Past that, obviously, O’Reilly has

many good resources for learning Linux. And the Internet is just sitting there, waiting for you.

Play with It!

The best way to learn Linux is to stand up an environment where you can explore without fear of the consequences if you mess something up. One way is to create a Linux VM; even a moderately provisioned modern laptop will comfortably run a Linux VM. You can also create one in the cloud, and many vendors make that easy, including DigitalOcean, Linode, Amazon Elastic Compute Cloud (EC2), Microsoft Azure, and Google Compute Engine. Many of these even offer a free level, perfect for playing!

Documentation and Instrumentation

To protect yourself in case you are thrown into the scenario outlined at the beginning of this report, you should make sure the following are in place at your shop:

The Linux systems are documented.

This should include their purpose, as-built

documentation outlining the distro, virtual or physical

hardware specs, packages installed, and so on.

These systems are being actively monitored.

Are they tied in to Paessler Router Traffic Grapher

(PRTG), SIEM, and other monitoring and alerting

systems? Make sure you have access to those alerts and

monitoring dashboards, as they can be a great source of

troubleshooting information.

You have access to the system credentials.

Ideally, your department uses secure vault software to

store and share system credentials. Do you have access

to the appropriate credentials if needed? You should

make sure before the need arises.

Conventions

If a command, filename, or other computer code is shown inline in a sentence, it appears in a fixed-width font:

ls --recursive *.txt

If a command and its output is shown on a terminal session,

it appears as shown in Figure P-1.

[image:]

Figure P-1. cat command All such blocks have been normalized to show a maximum of only 80 x 24 characters. This is intentional. Although most modern Linux systems and terminal windows such as ssh can handle any geometry, some systems and situations still give you the same terminal size that your grandfather would’ve used. It is best to learn how to deal with these by using less, redirection, and the like. In addition, screenshots are shown from a variety of systems, to get you used to the ways that command output and terminal settings can differ, much more than under the default Windows Command Prompt.

The examples in this book typically show something like myuser@ubuntu-512mb-nyc3-01:~ $ before the command (as in the previous example). In other systems, you may simply see ~ # (when logged in as root) or % (when running under csh). These command prompts are not meant to be typed in as part of the command. Although they may seem confusing in the samples, you need to get used to looking at a terminal and “parsing” what is being displayed. And in our scenarios, you won’t have control over the command prompt format. Get used to it.

Typically, the screenshots are set up with the command entered at the prompt at the top of the screen, the command output immediately following, and in most cases a new command prompt waiting for another command at the end, as in the preceding example.

In the few places, where a Linux command is shown in comparison to a DOS command run under Windows Command Prompt, the latter is shown in all uppercase to help distinguish it from the Linux equivalent, even though Windows Command Prompt is case-insensitive. In other words, cd temp is shown for bash, and CD TEMP for CMD.EXE.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

OceanofPDF.com

Chapter 0. Step 0: Don’t

Panic

The first, essential step is to stay calm. If you are dragged into trying to diagnose a Linux system and it isn’t your area of expertise, you can only do so much. We’re going to be careful to keep from changing system configurations, and we’re going to restart services or the system only as a last resort.

So just try to relax, like Merv the dog (Figure 0-1). No one should expect miracles from you. And if you do figure out the problem, you’ll be a hero!

[image:]

Figure 0-1. Merv the dog sez, Don’t panic

OceanofPDF.com

Chapter 1. Step 1: Getting In

Before I get too far, let’s talk about how to connect to a Linux system in the first place. If you have an actual physical machine, you can use the console. In today’s day and age, this isn’t likely. If you are running VMs, you can use the VM software’s console mechanism.

But most Linux systems run OpenSSH, a Secure Shell service, which creates an encrypted terminal connection via TCP/IP, typically to port 22. So, obviously, if you are connecting to an off-premise system, the appropriate firewall holes have to be in place on both sides. This allows you to connect from anywhere you want to work.

On Windows, you generally use PuTTY to establish SSH sessions with Linux systems. You typically need credentials as well, either from that sticky note your boss found, or preferably via your company’s secure credentials management system.

You also could connect using public/private key pairs, but that is beyond the scope of this report.

When you start PuTTY, it looks like Figure 1-1.

[image:]

Figure 1-1. PuTTY prompt

You typically type in a user ID (in this example, myuser), followed by the at sign, @, and then the system’s domain name or IP address (in this example, demo1).

When you click the Open button, if this is the first time you are connecting via SSH to a remote system, you will

receive a warning similar to the one in Figure 1-2.

[image:]

Figure 1-2. PuTTY alert

Simply click Yes, and the remote host’s key fingerprint will be stored so you don’t have to deal with this warning again. However, if you’ve already answered that prompt when connecting from your computer and you see it again for the same remote system, that means the remote machine’s IP address or other configuration has changed. That is often OK—changing the hosting provider for your public web server will trigger the warning for sure. However, if you know of no such changes, it may be indication of a system compromise, and you should abort the login and ask around.

You will then be presented with a password prompt, as

shown in Figure 1-3.

[image:]

Figure 1-3. PuTTY password Type in the password and hit Enter, and you should see

something similar to Figure 1-4.

[image:]

Figure 1-4. Successful login

You’re in! Congratulations (or condolences, depending on how you feel about this assignment).

“sudo make me a sandwich”

I’m going to take a brief intermission to discuss the sudo command. It stands for super-user do. If a user is in the sudo user group, that user is allowed to execute privileged commands. It is similar to doing a RUNAS command in the Windows Command Prompt to run a command under an elevated account.

Logging in remotely as root (system administrator) is frowned upon, and in fact often forbidden for security purposes. Hence, you’ll need to use sudo to run admin commands that you will see later.

When you try to run a command and get an Access Denied message, you can then try it with sudo—for example, sudo cat /var/log/dmesg . The first time you run sudo, you will get

the lecture shown in Figure 1-5, which contains good words to live by anytime you are running as an administrator on any system!

[image:]

Figure 1-5. sudo lecture

Note that you have to enter your password when you invoke sudo. Be clear, this is your user ID’s password, not root’s. This is to ensure that a human being is in control and that someone else isn’t trying to hijack your terminal session while you’re getting another cup of coffee.

Now that you know about sudo, you should get the

punchline to this comic, and hence the title of this section.

OceanofPDF.com

Chapter 2. Step 2: Getting

Around

Now that you’re logged in, the first thing you’ll want to do is inspect what is going on and how the system is configured. To do that, you need to list files and directories, and move around within the filesystem. This chapter covers these basics.

Where Am I?

Some command prompts are set to show the current directory path. Others are not, and it can be tough to remember where you are in the filesystem. The pwd (print working directory) command shows you:

bash-4.2$ pwd

/etc/init.d

Unlike in Windows, which is case-insensitive (but case-aware), in Bash and in Linux in general, case matters. By convention, most Linux commands are lowercase. If you try to type in an uppercase PWD , you will get a Command Not Found error.

Listing Files

In Bash, the ls (list) command is used to show directories and files. It is similar to the DIR command in Windows Command Prompt.

Figure 2-1 shows a simple sample of an ls command.

[image:]

Figure 2-1. ls command

Some ssh sessions use color highlighting, as shown in these screenshots (in this case, green means the file is executable). Some do not. So don’t be surprised if you see colors!

To see a more detailed listing of the files and directories,

you can use the ls -l command, as shown in Figure 2-2.

[image:]

Figure 2-2. ls -l command

From left to right, you see file permissions, owner, group, size, last modified date, and finally the file or directory name. File permissions are beyond the scope of this report, but if you continue your Linux education after reading this, you can learn more about them in my ebook.

In Windows, a file is hidden by setting a file attribute (metadata) on the file. In Linux, a file is hidden if its name starts with a period, or dot. To show these dot files, you use

the ls -a command shown in Figure 2-3.

[image:]

Figure 2-3. ls -a command

On the left you see . and .., which mean current directory and parent directory, respectively, just as in Windows. You also see previously hidden files such as .bash_history and the .ssh directory (in this example, blue denotes a directory).

Finally, you can combine parameters. If you want to see a detailed listing (-l) of all files (-a), recursively descending into every child directory (-R), you simply combine them all

(ls -alR), as shown in Figure 2-4.

[image:]

Figure 2-4. ls -alR command

Note the d in the far left column for ., .., and .ssh. This tells you they are directories, and in terminal sessions that do not use color highlighting, this d will be the only way you know which entries are files and which are directories.

Changing Directories

To change to a different directory, use the cd (change directory) command.

Linux uses the / character as the path delimiter, unlike Windows, which uses \. This will trip you up the first few times, especially because \ has a different meaning in Bash (it is an escape character).

Linux doesn’t use drive letters. Instead, all devices are mounted in a single hierarchical namespace starting at the root (/) directory. You will see examples of this later in this report.

On login, you are usually in the home directory, which is represented by ~. It is similar to the user directories under C:\Users on Windows. Hence, you will probably need to go elsewhere. Here’s a list of common directories on Linux systems that are of interest:

/etc

System configuration files (often pronounced slash-et-

see if someone is instructing you what to do over the

phone)

/var

Installed software

/var/log

Log files

/proc

Real-time system information—similar to Windows

Management Instrumentation (WMI), but easier!

/tmp

Temp files, cleared on reboots

Remember, case matters! And use /, not \!

Changing to another directory with cd is simple, as you can

see in Figure 2-5.

[image:]

Figure 2-5. cd /etc command

Be Lazy

Most modern interactive shells like Bash and Windows Command Prompt allow for tab expansion and command history, at least for the current session of the shell. This is a good thing in a crisis situation, because it saves you typing, and thus, time.

Tab expansion is like autocomplete for the command prompt. Let’s say you have some files in a directory, as

shown in Figure 2-6.

[image:]

Figure 2-6. ls /var/log command

Without tab expansion, typing out something like this is slow and error-prone:

cd unattended-upgrades

But with tab expansion, you can simply type cd un[Tab], where [Tab] represents hitting the Tab key, and because only one directory starts with un, tab expansion will fill in the rest of the directory name for you.

One way that tab completion in Bash is different than in Windows Command Prompt is that in Bash, if you hit Tab and there are multiple candidates, Bash will expand as far as it can and then show you a list of files that match up to that point. You can then type in more characters and hit Tab again to complete it.

For example, in the previous example, if you wanted to list the details of the pm-powersave.log.2.gz file, instead of typing out ls -l pm-powersave.log.2.gz (27 keystrokes to type and possibly get wrong), you could use tab expansion to get it in two simple steps:

1. Type ls -l pm-p[Tab]. This would expand to ls -l pm-

powersave.log., because only the files named pm-

powersave.log. begin with pm-p. In this case, I specified

just enough characters to distinguish between pm-

powersave.log files and those beginning with pm-

suspend.log.

2. Type 2[Tab]. This would complete the rest, .gz, because

only one pm-powersave.log. file has a 2 in the next

character location.

Thus, a total of 13 keystrokes, with two tab characters, saved typing 14 more!

Tab expansion is your friend, and you should use it as often as possible. It gives at least three benefits:

Saves you typing.

Helps eliminate misspellings in long file and directory

names.

Acts as an error checker—if the tab doesn’t expand,

chances are you are specifying the beginning part of the

name wrong.

Another thing to remember about the interactive shell is command history. Both Windows Command Prompt and Bash give you command history, but Bash supports a rich interactive environment for searching for, editing, and saving command history. However, the biggest thing you need to remember in an emergency is simply that the up and down arrows work in the command prompt and bring back your recent commands so you can update them and re-execute them. This saves typing and reduces errors—use it!

OceanofPDF.com

Chapter 3. Step 3: Peeking

at Files

Now that you know how to move around in the filesystem, it is time to learn about how to inspect the content of files. In this chapter, I show a few commands that allow you to look inside files safely, without changing them.

Cool cat

The cat (concatenate) command dumps a file to the console,

as shown in Figure 3-1.

[image:]

Figure 3-1. cat command We will be using cat a lot in the rest of this report. Because most Linux configuration and log files are text, this command is handy for examining files, knowing that we can’t change them by accident. The CMD.EXE equivalent is the TYPE command.

less Is More

The less command paginates files or output, with each “page” based on the size of the console window.

In Bash, as in Windows Command Prompt, the output from one command can be redirected, or piped, to another command by using the | character. In Linux, where each command “does one thing, well,” it is common practice to combine multiple commands, piping the output from one command to the next to accomplish a series of tasks in sequence. For example, later in this report you will see how to use the ps command to produce a list of running processes and then pipe that output to the grep command to search for a specific process by name. To demonstrate, although less can be passed a filename directly, here’s how to pipe command output from cat to less:

~ $ cat /etc/passwd | less

The output from less clears the screen, and then shows the

first page, as you can see in Figure 3-2.

[image:]

Figure 3-2. less output

The colon at the bottom of the screen indicates that less is waiting for a command. After less displays its output, you have various navigation options:

Space, Page Down, or the down arrow scrolls down.

Page Up or the up arrow scrolls up.

/ finds text searching forward (down) from the current

cursor position, until the end of the file is reached; for

example, /error.

? finds text searching backward (up) from the current

cursor position, until the beginning of the file is reached;

for example, ?error.

n finds next instance of the text you’re searching for

(note that the meaning of this is reversed when using ?).

p finds previous instance of the text you’re searching for

(note that the meaning of this is reversed when using ?).

q quits the less command and returns you to the prior

view of the console.

tail Wind

The tail command shows the last lines in a file. It is useful when you’re looking at large log files and want to see just the last lines—for example, right after an error has occurred. By default, tail will show the last 10 lines, but you can adjust the number of lines displayed with the -n

parameter. For example, Figure 3-3 shows how to display just the last five lines.

[image:]

Figure 3-3. tail command

The tail command can also “follow” a file, remaining running and showing new lines on the console as they are written to the file. This is useful when you’re watching a log file for a new instance of an error message, perhaps as you are testing to see if you can trigger the condition by visiting a web page on the site that is throwing an error.

Figure 3-4 shows an example using the -f parameter to follow a log file.

[image:]

Figure 3-4. tail -f command

OceanofPDF.com

Chapter 4. Step 4: Finding

Files

In the preceding chapter, you learned how to look inside files without changing them. But how do you know which files to look at? In this chapter, I cover searching for files, which can help narrow the scope for your troubleshooting.

find Files Fast

The find command is one of the most useful commands in Linux. The command works like this:

Starting at location x

Recursively find entries that match condition(s)

Do something to each match

As a simple example, let’s say you’re in the /var/log directory, and you want to find all files that end in .log. Because there may be a lot of them, you will pipe the output to less so you can page through it. Here is the command:

/var/log# find . -name *.log -print | less

Remember that I said the \ has a different meaning in Bash, that it is an escape character? Notice its use in this example, where it is preventing the Bash shell from expanding the wildcard character (*) into all matching files in the current directory. Instead, by escaping it, the \ character is telling find to expand that wildcard in the current directory and all of its children.

Figure 4-1 shows the first page of the output I got from that command, awaiting our navigation via less.

[image:]

Figure 4-1. find results

The find command has a lot more power than this simple example! You can find files and directories based on creation and modification dates, file sizes, types, and much more. You can execute any variety of actions on each one as you find them, including Bash commands and shell scripts.

Figure 4-2 shows another example, where I am looking for all log files in /var/log and its child directories that were modified in the last hour, using the -mmin (modified minutes) parameter set to -60 minutes. In this example no action parameter is given, so -print is implied.

[image:]

Figure 4-2. find -mmin

You can also combine multiple search conditions and multiple actions. For example, if you want to find all log files in /var/log that were modified in the last minute (-mmin-1), and then print its path (-print) and display the last two lines of each log file found (using tail -n 2), you use the following:

sudo find . -mmin -1 -print -exec tail -n 2 \{\} \;

I will pick that apart for you. From left to right:

sudo

Because some of the log files are protected unless you

are root.

find

Search for some files.

.

Starting in the current directory (in this example, that’s

/var/log).

-mmin -1

Find files that were modified in the last minute (-1).

-print

Print its full path.

-exec

For each file found, execute a command.

-tail -n 2

As you learned in the preceding chapter, tail shows you

the final lines of a file; by default, it shows the last 10

lines, but here I have specified that it should show only

the last 2 lines.

\{\} \;

Passing in the full path of the filename found to the tail

command.

That last little bit of magic is important, and you will do well to memorize it for using -exec with the find command. The \{\} is the syntax for “pass in the path of the file that was found” (it is actually {}, but the \ characters are escaping the brackets because they have special meaning to the Bash shell). The ; is terminating the -exec parameter, so that other action parameters could follow on the find command. It is similarly escaped by \ because the semicolon also has special meaning to Bash. The intervening space between \{\} and \; is required!

Figure 4-3 shows it in action.

[image:]

Figure 4-3. find tail

Because of the usefulness of the find command, I recommend you study it and play with it if you get a chance.

Location, Location, Location

The locate command searches a list of all the filenames on the system. The filenames are gathered periodically by a service, so it does not update in real time, but usually close enough. If you know the name of a file you are looking for, perhaps the Apache access.log file (which can change location depending on the Linux distro), you can use the locate command to quickly find it. Because locate searches a pre-built list, it is much quicker for finding files by name than using find -name.

The locate command isn’t “smart.” It is simply looking for any file or directory with the string you pass it somewhere in the path. For example, if you execute locate log | less in

the root (/) directory, you’ll see something like Figure 4-4.

[image:]

Figure 4-4. locate results

Note that log appears somewhere in each path, but doesn’t necessarily lead to log files.

OceanofPDF.com

Chapter 5. Step 5: Search Me

In the preceding chapter, you learned to search for files by their attributes, such as name, last modified time, and the like. In this chapter, I show how to search inside a file, perhaps to find a specific error message.

Getting a grep

The grep command (whose name comes from globally search a regular expression and print) searches within files. It uses regular expressions (regex) to match patterns inside the files. It can be used to search within binary files, but is most useful for finding things inside text files. There are lots of uses for this command in our crisis scenario, such as searching for certain error messages within log files, or finding every mention of a certain resource inside the source files for an entire website.

There is an old joke by Jamie Zawinski:

Some people, when confronted with a problem, think, “I

know, I’ll use regular expressions.” Now they have two problems.

Some regular expressions are simple—for example, *, which you should recognize as a valid wildcard in Windows Command Prompt. Others can be mind-blowingly complex. For example:

^\(*\d{3}\)*(|-)*\d{3}(|-)*\d{4}$

This regular expression is an (incomplete) approach to matching US phone numbers.

Because regexes are so inscrutable, sometimes I write a regex in a program or a script, come back to it six months later, and have no idea what it is doing. (Now I have two problems.) In this chapter, you’re just going to look at a few simple examples.

Here are some samples of using regular expressions with grep. You will look at the output of some of them in the following screenshots.

grep 500 access.log

Find any occurrence of 500 in access.log

grep '\s500\s' access.log

Find 500 surrounded by whitespace (space, tab)

grep '^159.203' access.log

Find 159.203 at beginning of lines (^)

grep 'bash$' /etc/password

Find bash at end of lines ($)

grep -i -r error /var/log

Find all case-insensitive (-i) instances of error in the

/var/log directory and its children (-r)

For that first example, you know that if a web program throws a server-side error, by convention it will send an HTTP status code of 500 to the client (browser). Most web servers also write that to their logs. So let’s look for 500 in

Apache’s web log, as shown in Figure 5-1.

[image:]

Figure 5-1. grep command

I use the '\s500\s' regular expression in this command to make sure that only instances of 500 surrounded by spaces (or tabs) are found. Web logs tend to put the HTTP status code in its own column, and I don’t want to see extraneous 500s that are part of response sizes, time-zone offsets, or whatnot.

Perhaps you’re being attacked by a block of IP addresses, maybe a bunch of botnets running on some cable modems. The IP block attacking you is 159.203, so let’s find all log lines that start with that client address, as shown in

Figure 5-2.

[image:]

Figure 5-2. grep 159.203 command In this case, note that the regular expression starts with ^, which means to look for the following pattern only at the beginning of each line in the log file.

Similarly, you can look for patterns at the end of each line as well. The /etc/passwd file holds every user ID on a Linux system. (Don’t worry, it no longer holds the password, but once upon a time, it did!) Each user is defined by a line in the file, and the last entry on each line indicates the “shell” in which they run. Some user IDs are defined to not be allowed to have interactive logins, and so they might have something like /bin/false or /usr/sbin/nologin as their shell.

But user IDs that can log in will have bash or csh or similar. So if you want to find all user IDs that can log in

interactively, you could use the command in Figure 5-3, which looks for bash at the end of the line by specifying the $ in the regular expression.

[image:]

Figure 5-3. grep bash command

You then see that root and myuser are the only IDs allowed an interactive login on this system.

Finally, because you’re trying to find out what is wrong with the Linux system you’ve been thrown into, perhaps you want to see each instance of the word exception in the log files. You could do that with something like this:

grep -i -r 'exception' /var/log | less

Here’s what each part of that command does:

grep

Searches through files

-i

Ignores case (makes the search string case-insensitive)

-r

Recursively searches through all directories

'exception'

Looks for the string exception

/var/log

Starts in the /var/log directory

| less

Pipes the output through less so you can look at it one

“page” at a time

Figure 5-4 shows the first page of the output.

[image:]

Figure 5-4. grep exception results In this case, you see a bunch of authorization failures in the first page of output from the /var/auth log. If the problem you are chasing includes an authentication error, perhaps on your website, this would show a good path to keep continuing down. Many times you have to change your search phrases multiple times and use your “tech intuition” to decide which errors are worth following further. Troubleshooting is often more of an art than a science, so “Use the Force, Luke.”

OceanofPDF.com

Chapter 6. Step 6: What’s

Going On?

You have now learned how to navigate around, look inside files, and find files and search their contents. In this chapter and the next, I show you how to determine real-time system state, with an eye toward clues that may point to underlying problems.

It’s All Part of the Process

The ps (process) command shows running processes, akin

to the Windows Task Manager, as you can see in Figure 6-1.

[image:]

Figure 6-1. ps command

By default, ps shows only the processes for the current user. In the preceding example, the active processes are the Bash shell and the ps command itself.

If you want to see all running processes, you add the -A parameter. To make it pretty and show the hierarchical relationship between parent and child processes, you add -H :

ps -AH | less

Figure 6-2 shows the output.

[image:]

Figure 6-2. ps -AH command

Here you see many child processes running under init, which is typically the first process that runs (note that the left column shows init has a process ID of 1). Also notice that under a series of sshd (SSH daemon, or service, processes) is our bash session running ps, which is piping output to less.

Who’s on top?

The top command (Figure 6-3) shows processes sorted by resource consumption. It updates every few seconds, similar to Windows Task Manager.

[image:]

Figure 6-3. top command

Notice that the top output is divided into two sections. The, well, top section shows system-level statistics: up time, number of logged-in users, number of processes, CPU and memory utilization, and so on.

The bottom section shows the various processes running, sorted by CPU utilization. Some of the more important columns are PID (process ID), USER, VIRT (virtual memory), %CPU, %MEM, and COMMAND. Similar to less, you can quit top by typing q or hitting Ctrl-C.

If you want to have top sort its output by something other than CPU usage, you pass it the -o (order) parameter

followed by the column name. In Figure 6-4, the output from top -o '%MEM' is sorted by memory utilization.

[image:]

Figure 6-4. top -o command

If your symptoms seem performance-related, you can use top to see whether a process or processes are eating up all the CPU cycles or hogging memory and thus causing excessive paging. If a certain process keeps showing at or near the top of the list with every refresh, it may well be your culprit.

The /proc Directory

Linux doesn’t mount devices under drive letters as in Windows, but instead uses a single hierarchical filesystem, with different resources mounted under the root (/) directory. In fact, because Linux uses an “everything is a file” paradigm, virtual filesystems that aren’t backed by an actual device can be mounted in the hierarchy as well.

One of the best examples of this is the /proc directory, a virtual filesystem that presents real-time system statistics as files and directories. This makes the information way easier to access than the rather opaque Windows WMI APIs. For example, you can see information on the CPUs

being used on the system, as shown in Figure 6-5.

[image:]

Figure 6-5. /proc/cpuinfo

This image shows just the beginning of the “file” containing information about the CPU(s) in the system. For example, with multicore processors, there are repeating sections for each core.

Similarly, memory info can be displayed as shown in

Figure 6-6.

[image:]

Figure 6-6. /proc/meminfo

Let’s look at a listing of the /proc directory contents in

Figure 6-7.

[image:]

Figure 6-7. proc dir This gives an idea of all the various types of information available. The blue entries are directories containing even more data. Note the numbered directories on the left. Each of these directories contains real-time statistics for each running process, listed by process ID. If you change into one of those directories and list it, you see an incredible amount of information about that specific process, all of which will be updated in real time every time you display it,

as shown in Figure 6-8.

[image:]

Figure 6-8. proc pid

That is just a taste of the types of useful information you can gather by looking in /proc.

Networking

The ifconfig command shows information on the system’s network interfaces (similar to the IPCONFIG command in

Windows), as you can see in Figure 6-9.

[image:]

Figure 6-9. ifconfig command

Here you see that the system, my handy Raspberry Pi, has two network interfaces. The first is eth0, an Ethernet interface. The MAC address, IPv4 and IPv6 configuration, and various network statistics are shown. The second interface, lo, is the local loopback, 127.0.0.1.

Most networking commands that you may be used to in Windows are also available in Linux, such as ping, shown in

Figure 6-10.

[image:]

Figure 6-10. ping command

One difference between ping on Linux versus Windows is that on Linux the output does not stop until you hit Ctrl-C. This is similar to PING -T on Windows.

The traceroute command, shown in Figure 6-11, is also available (note the spelling difference from TRACERT on Windows).

[image:]

Figure 6-11. traceroute command Two other network commands you may find useful during troubleshooting are dig and whois, both of which return DNS information for domain names or IP addresses.

OceanofPDF.com

Chapter 7. Step 7:

Filesystems

You have just seen how to look at real-time system state in terms of processes, memory, and networking. Now I show how to check out the filesystems, with an eye toward disk utilization.

Displaying Filesystems

On any computer system, running out of disk space can cause many problems. On Linux, two commands are helpful in determining disk utilization.

The df (display filesystems) command shows the mounted files systems along with statistics on space usage, as you

can see in Figure 7-1.

[image:]

Figure 7-1. df command

The main device you’re interested in is the first one, which shows /dev/vda1 mounted on /. Note the columns showing disk size, Used, Available, and Use%.

Figure 7-2 shows an example where disk utilization may be causing trouble.

[image:]

Figure 7-2. df showing full disk drive

The /dev/vda1 device is 100% full!

Where Did All the Disk Space Go?

Once you’ve seen that there may be a problem with disk space, how do you find out where it is being used? You can use the du (disk utilization) command for that. By default, it descends through every directory and shows you disk usage for every subdirectory under which it is invoked (think DIR /S on CMD.EXE). That can generate a lot of output and can take a long time to run.

What we really want to do is start at the top and narrow our search to a specific problem directory. Let’s just look at the top-level directories under /. For that, I pass in the -d 1 (depth of 1) parameter. To make the output easier to read, I also pass -BM to show blocks in megabytes. Finally, as you

can see in Figure 7-3, I’m using sudo, because otherwise I wouldn’t have permission to descend into some system directories to calculate their disk space.

[image:]

Figure 7-3. du command

You can see that /usr is using 778 MB of space, followed by some fairly inconsequential directories, but /tmp is using over 16 GB of space. It must be the culprit! From there, you can go look in /tmp (which, remember, is cleared on reboots) to see what is taking up all the space.

You can continue to use du to successively refine your search. If, instead of /tmp in this simple example, the /var directory was the one showing high disk utilization, you could cd into it and then run this du command again, and continue to traverse down the directories until you find what is using up all the space. You could remove the -d parameter and pipe the output to less, but you probably don’t want to do that because on a large system with thousands of directories, you could be paging through the output for a long time!

OceanofPDF.com

Chapter 8. Step 8:

Transferring Files

Perhaps you think you’ve found evidence of a system compromise, or you fear log files will be altered if you end up restarting services or the system itself. If you want to preserve files on another system so that someone more knowledgeable can look at them later, the commands in this chapter will come in handy.

Most commands in this report will not alter system state. However, the commands in this chapter and the next have the potential to do so. In this chapter, the commands to transfer files from the Linux system to another system for later analysis can also work in reverse —that is, transfer files to the Linux box. So be careful!

Secure Copying

The scp (secure copy) command can be used to copy files over the SSH protocol (the same protocol that you’re running your ssh terminal session over). This command allows us to copy files using an encrypted, compressed mechanism.

If you are going to copy files from Linux “down” to your Windows system, you need a program that will run on Windows. The creator of PuTTY made PSCP.EXE for precisely that purpose: to implement scp for Windows. You can

download it from the same place as PuTTY.

The PSCP.EXE program, shown in Figure 8-1, is meant to run under Windows Command Prompt (CMD.EXE). It takes the same parameters as scp.

[image:]

Figure 8-1. pscp command

In this example, the -r means to copy recursively. The myuser@demo1 is the user ID and machine address, exactly the same as what you specify when connecting with PuTTY. Note that immediately following that connection info (with no space) is a colon and then a path. This path is where you will be copying from—in this example, it’s /var/log/syslog. The final parameter is the to location—for example, F:\Temp\.

When you invoke PSCP.EXE, it will prompt you for the user’s password, and then transfer the file(s) specified. In our example, only one file, syslog, is transferred.

Like the Windows COPY and MOVE commands, most copy and move commands on Linux specify from as the first path and to as the second. Make sure you specify these paths in the correct order!

Copying to a Windows Share

The PSCP.EXE command can be used to pull information from Linux to your local Windows machine. If the Linux system is on the same network as a Windows file share, you can use smbclient to push files to a CIFS/SMB file share. Both machines must be on the same network for this to work; it will not work across the Internet.

The smbclient command uses similar subcommands as ftp, so if you have ever done FTP transfers from the Windows command line, it should be familiar. One difference is that, instead of specifying the subcommands one at a time after connecting, you can pass a string of commands to execute to smbclient as a parameter on the command line, as in

Figure 8-2.

[image:]

Figure 8-2. smbclient command

What’s going on here? The first parameter, //mtlindsey/docs$, is the Windows share name. The only difference from how this is specified on Windows is the direction of the slashes. The -U parameter is the Windows user ID to use. The -c parameter then gives a list of semicolon-delimited subcommands to execute:

prompt

Turn off prompting for each file

lcd /var/log

Change the local (Linux) directory to /var/log

mput auth.log*

Send (put) multiple files with a name pattern of

auth.log* to the Windows share

quit

Exit the command

After being prompted for a password, you then see the results. The files ending in .gz have been compressed using

the GNU zip algorithm.

OceanofPDF.com

Chapter 9. Step 9: Starting

and Stopping

If you are investigating a system that seems hung (perhaps the public website isn’t responding and your management wants you to “do something”), the old tried-and-true method of restarting services or the entire system itself is often your last resort. Rebooting Windows always fixes problems, so you already know one method for approaching Linux issues too! In this chapter, I show you how to restart services and reboot the system.

Most commands in this report will not alter system state. However, this chapter covers commands that start, stop, and restart Linux services and the entire system. Therefore, you could possibly stop something, and because of the situation you are investigating, not be able to restart it. So be careful!

Managing Services

Linux services (a.k.a. daemons, which is why so many Linux services end in d, such as sshd and httpd) are similar to Windows services. They are processes that run in the background, typically initiated at system startup. Examples of services include web services (Apache), database services (MySQL), and so on.

Typically, you use the service command to start, stop, and

restart services. It requires sudo. Figure 9-1 shows how to start the mysql service.

[image:]

Figure 9-1. service start command

You can see that the process ID (PID) of the service is returned by the command. You stop a service the same way,

as shown in Figure 9-2.

[image:]

Figure 9-2. service stop command

As you can likely guess, restarting a service, just as on Windows, is simply a combination of stopping and then

starting it; see Figure 9-3.

[image:]

Figure 9-3. service restart command

You can check the status of a service with…wait for it…the

status command (Figure 9-4).

[image:]

Figure 9-4. service status command

Another way to tell whether a service is running is to use

our old friends ps and grep (Figure 9-5).

[image:]

Figure 9-5. ps and grep commands

Note how I start and stop the mysql service, but under the covers it is the mysqld command (or daemon) that is running. That information can be useful when searching through log files.

When starting a service, you may get an error. Often, the output from the service command isn’t helpful. On most systems, service is just a thin wrapper around a series of scripts in /etc/init.d. You can often run one of the scripts directly from /etc/init.d and get better error information

(Figure 9-6).

[image:]

Figure 9-6. start mysql error

Hmmm…disk full. Does that remind you of anything? See

Figure 9-7.

[image:]

Figure 9-7. du command

Let’s go to /tmp, as shown in Figure 9-8, and see if you notice anything wrong.

[image:]

Figure 9-8. ls /tmp command

Sure enough! That’s one big file! Obviously, in real life it wouldn’t be this easy. But you now should be seeing how the tools in the previous chapters are adding up to help determine what may be going wrong.

Killing a Process

The kill command sends signals to processes. The default behavior for a process is to stop when it receives a signal, although signals can also be used to tell a service to reload its configuration file, and so forth.

Sometimes a service may hang to the point where it won’t respond to the service command. The next step is to try to

kill it. First, you need to find its process ID. In Figure 9-9, we’re finding the process ID for the mysvc process.

[image:]

Figure 9-9. find mysvc process

After you have the process ID (20330 in this case), you can

try to kill it, as shown in Figure 9-10.

[image:]

Figure 9-10. kill command

Let’s look at Figure 9-11 to see if that worked.

[image:]

Figure 9-11. no more mysvc

Yup— ps piped through grep shows no active processes named mysvc running.

But sometimes even kill doesn’t work. For one, programs can be written to intercept most signals, enabling communication with the background process from the command line. Or the process may really be “hung hard.” In that case, you need to terminate, with prejudice, as

shown in Figure 9-12. The -9 (minus nine) signal is one that processes cannot trap (intercept).

[image:]

Figure 9-12. kill -9 command

You should use the kill -9 command with extreme caution. Notice that the first kill example returns Terminated, but in this case it comes back with Killed. Because the process cannot intercept a -9 signal, it has no chance of ending cleanly. There may be open files, unflushed buffers, database transactions that haven’t been committed, and other in-flight processing that will be lost when you use the kill -9 command. Invoke it only as a last resort!

When All Else Fails

Just as on Windows, sometimes a system restart is the ultimate cure. The reboot command does just what you’d expect. A shutdown command provides more options, such as waiting for a number of seconds first, but you probably won’t need it. In any case, both require sudo to run, and you will lose your ssh connection and will need to log back in again after the system comes back up to ensure everything is back in order.

OceanofPDF.com

Chapter 10. Step 10: Where

to Go for Help

This report is just a quick flyover of Linux commands and how to use them to do quick troubleshooting. Even with the commands covered in the report, I excluded many, many options to keep it simple. But sometimes, even in the heat of troubleshooting a system problem, you need a bit more help. This chapter covers where you can go to get it.

Hey, man

The man (manual page) command provides documentation on commands, system configuration files, and much more. This command is good for when you can’t access the Internet, or doing so isn’t convenient because you are on a

machine console or similar setup. Figure 10-1 shows the first page of output from man reboot.

[image:]

Figure 10-1. man command

The output is run through pagination similar to less, so all its navigation and find commands will work. You can, of course, find out more about how to use man by running man man.

Is That apropos?

How do you know what you don’t know? Sometimes you might not know (or remember) the name of a command. For example, you may recall that this guide mentioned disk space, but can’t remember the actual commands. Luckily, you can use the apropos command to jog your memory, as

shown in Figure 10-2.

[image:]

Figure 10-2. apropos command

The apropos command is simple. All it does is search through all the man page titles for the string you pass it. In this case, apropos space should be enough to help you recognize the df and du commands again.

Additional Resources

There are plenty of places to go for more help with Linux:

DuckDuckGo and Google

Search engines, with DDG often providing direct help

for a command as the first result

Stack Exchange

A UNIX-specific Stack Exchange site for questions

Debian docs

Provides good documentation, much of it applicable

across distros

Arch docs

Ditto

die.net

Online man pages

OceanofPDF.com

Chapter 11. The End

Now you know what I know. Or at least what I keep loaded in my head versus what I simply search for when I need to know it, and you know how to do that searching, too. Hopefully, this report will help you sometime when you most need it.

Good luck, citizen!

OceanofPDF.com

Appendix A. Cheat Sheet

That rug really tied the room together, did it not?

—Walter Sobchak, The Big Lebowski

This chapter lists many of the commands covered in this report. Use man or other methods outlined in the report to find more information on them.

Redirection Command

See I/O Redirection

|

Pipe stdout from one process into stdin in another

process.

System Directory Commands

See Important System Directories

/etc

Configuration files location

/home

Home or user profile directories

/proc

System runtime information

/root

Home directory for root user (system admin)

/tmp

Temporary files location

/var/log

Log files location

Standard User Commands

These are “Section 1” commands, normal user commands that typically don’t require any special privileges beyond permissions to access files and the like.

apropos

Search for help on commands by title

bash

The Bourne-again shell

cat

Concatenate the input files to stdout

cd

Change the current directory

cp

Copy files or directories

df

Show space utilization by filesystem

dig

Look up DNS info on an address

du

Estimate disk usage

find

Find files based on various conditions and execute

actions against the results

grep

Search for a pattern (regular expression) in files

less

Display the file one page at a time on stdout

locate

Locate files by name

ls

List directory contents

man

Display manual pages; remember, q quits

ps

List running processes

pwd

Print the current (working) directory name

scp

File copy over Secure Shell protocol

smbclient

Copy files to and from Windows using the SMB/CIFS

(Windows file share) protocol

ssh

Secure Shell terminal program and protocol

tail

Display the last lines of a file

top

List processes by resource utilization (CPU)

whois

Look up DNS ownership info on an address

System Commands

Most of these are “Section 8” commands, and may require special privileges such as sudo to run, depending on the system. Yes, some systems restrict the use of ping!

ifconfig

Display network (interface) configuration

kill

Terminate a process

ping

Test for network connectivity to an IP address

reboot

Restart the system

shutdown

Shut down or restart the system

sudo

Execute a command with elevated privileges

traceroute

Trace the route to an IP address

OceanofPDF.com

About the Author

Jim Lehmer has been “in computers” for over three decades. He has held various software development roles, including programmer, systems programmer, software engineer, team lead, and architect.

Besides bragging about his wife, Leslie, his five children, and four grandchildren, his hobbies include reading, writing, running, hiking, and climbing.

Acknowledgments

Thanks to my coworkers, who inspired and attended the lunch-and-learn sessions from which my ebook, webcast, and this report grew—especially Aaron Vandegriff and Rob Harvey. I received excellent advice and promotion from Professor Allen Downey, for which I am grateful. I am thankful to my editor at O’Reilly, Dawn Schanafelt, with her eye for detail and helpful suggestions. Finally, I owe more than I can repay (as usual) to my wife, Leslie, who deserves shared credit for putting up with me during the nights and weekends I obsessed over this project.

OceanofPDF.com

index-47_1.png
myuser@ubuntu-512mb-nyc3-01:~$ ps
PID TTY TIME CMD
18357 pts/0 ©0:00:00 bash
19188 pts/0 00:00:00 ps
myuser@ubuntu-512mb-nyc3-01:~$ ||

index-44_1.png
/var/log/auth.
ed disconnect
reauth]
/var/log/auth.
ed disconnect
reauth]
/var/log/auth.
ed disconnect
eauth]
/var/log/auth.
ed disconnect
reauth]
/var/log/auth.
ed disconnect
reauth]
/var/log/auth.
ed disconnect
preauth]
/var/log/auth.

log:Mar 27 15:56:12 ubuntu-512mb-nyc3-01 sshd[1927]:

from 162.255.86.31: 3: com.jcraft.jsch.JSchException

log:Mar 27 22:23:53 ubuntu-512mb-nyc3-01 sshd[1650]:

from 162.255.86.31: 3: com.jcraft.jsch.JSchException

log:Mar 27 23:15:31 ubuntu-512mb-nyc3-01 sshd[1694]:
from 195.154.52.9: 3: com.jcraft.jsch.JSchException

log:Mar 28 03:09:29 ubuntu-512mb-nyc3-01 sshd[1939]:
from 162.255.86.3.

log:Mar 28 09:59:29 ubuntu-512mb-nyc3-01 sshd[2971]:
from 162.255.86.3.

log:Mar 28 10:03:25 ubuntu-512mb-nyc3-01 sshd[2992]:

3: com.jcraft.jsch.JSchException

3: com.jcraft.jsch.JSchException

error: Receiy|
Auth fail [p

error: Receiv|
Auth fail [p

error: Receiv|
Auth fail [pr|

error: Receiv|
Auth fail [p

error: Receiv|
Auth fail [p

error: Receiv}

from 125.212.232.94: 3: com.jcraft.jsch.JSchException: Auth fail [

log:Apr 1 03:11:00 ubuntu-512mb-nyc3-01 sshd[12787]

: error: Recei

ved disconnect from 42.114.202.229: 3: com.jcraft.jsch.JSchException: Auth fail

[preauth]
/var/log/auth.

log:Apr 1 03:11:12 ubuntu-512mb-nyc3-01 sshd[12789]

: error: Recei

ved disconnect from 42.114.202.229: 3: com.jcraft.jsch.JSchException: Auth fail

index-49_1.png
top - 11:09:03 up 5 days, 15:53, 1 user, load average: 0.00, 0.61, 0.05
Tasks: 77 total, 2 running, 75 sleeping, O stopped, O zombie
%Cpu(s): 1.7 us, 4.3 sy, 0.0 ni, 94.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st

KiB Mem: 501792 total, 368352 used, 133440 free, 26764 buffers
KiB Swap: 1048572 total, 5300 used, 1043272 free. 211112 cached Mem
S R S
0 05 0.3 0. rcu_sched

1 root 33496 1580 524 S 0.0 0.3 init
2 root) 0) 05 0.0 0.0 kthreadd
3 root 0)) 05 0.6 0.0 ksoftirqd/0
5 root 0)) 05 0.6 0.0 kworker/0:6H
8 root [} 0 0 0R 0.0 0.0 rcuos/0
9 root))) 05 0.0 0.0 rcu_bh
10 root))) 05 0.6 0.0 rcuob/0
11 root))) 05 0.6 0.0 migration/
12 root 0)) 05 0.6 0.0 watchdog/0
13 root 0 -20)) 05 0.0 0.0 khelper
14 root 20 0)) 05 0.0 0.0 kdevtmpfs
15 root 0 -20)) 05 0.0 0.0 netns
16 root 0 -20)) 05 0.0 0.0 writeback
17 root 0 -20)) 05 0.0 0.0 kintegrityd
18 root 0 -20)) 05 0.0 0.0 bioset
19 root 0 -20 0 0 0S 0.0 0.0 kworker/u3:0

index-48_1.png
316
321
563
784
860
866
890
945
948
953
954
957
987
18353
18356
18357
19193
19194
991
992
996
1196

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

03 init
00 upstart-udev-br
00 systemd-udevd
00 upstart-socket-
00 dbus-daemon

00 systemd-logind
10 rsyslogd

00 upstart-file-br
00 getty

00 getty

00 getty

00 getty

00 getty

06 sshd

00 sshd

[sshd

00 bash

00 ps

00 less

00 acpid

01 cron

00 atd

00 getty

index-51_1.png
lehmer@MtHarvard /proc $ cat cpuinfo

processor 10

vendor_id : GenuineIntel

cpu family 16

model : 69

model name : Intel(R) Core(TM) i5-4200U CPU @ 1.60GHz
stepping i1

microcode 1 0x14

cpu MHz : 899.875

cache size 1 3072 KB

physical id 10

siblings 4

core id 10

cpu cores 12

apicid 10

initial apicid : @

fpu : yes

fpu_exception : yes

cpuid level 113

wp : yes

flags fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov

i s Gl (5 o 03 e S0 S0 6 1 syscall nx pdpelgb rdt
scp Im constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc ap)
erfmperf eagerfpu pni pclmulgdg dtes64 monitor ds cpl vmx est tm2 ssse3 fma cx16|

index-50_1.png
top - 11:10:07 up 5 days, 15:54
1 running,
0.0 sy

Tasks: 77 total,
%Cpu(s): 0.3 us,
KiB Mem:
KiB Swap:

7382
7389
7387
7386
7388
10570
7390
7394
866
18353
18357
18356

19225
860
784

mysql
root
www-data
www-data
www-data
www-data
www-data
www-data
www-data
syslog
root
myuser
myuser
root
myuser
root
message+

501792 total,
1048572 total,

cooococooocooo0000 0D

558384
377868
378084
378092
378120
378120
378092
377940
377940
255840
103572

22452
104156

33496

24816

43448

39224

1 user,

76 sleeping,

FELPY
8004
7976
7928
7900
7756
7528
7528
6120
4212
3744
2504
1580
1516

936
708

0.0 ni, 99.7 id,
367852 used,
5300 used,

7220
1432
1396
1332
1304
1244
1156
1156
400
3248
1852
924
524
1116
764
528

P RVRURT SV SURVAT SRRV SVRRRR .

coooooo00000000 O
cowooooooooo000®®

coooOOOR LR R R RN
EhbbnNDNOLLa oo N

0.0 hi

load average: 0.00, 0.61, 0.05
o stopped,
0.0 wa

133940 free,
1043272 free.

0 zombie
0.0 si
26796 buffers

0.0 st

211112 cached Mem

nysqld
apache2
apache2
apache2
apache2
apache2
apache2
apache2
apache2
rsyslogd
sshd

bash

sshd

init

top
systemd-log+
dbus-daemon

index-52_2.png
lehmer@MtHarvard

1 1594
10 17
1025 1743
11 18
1185 1808
1191 1870
12 19
1210 1910
1216 192
13 198
1342 2
1388 20
1390 2001
1398 2002
1399 21
14 2166
1402 2175
142 2178
143 2184
144 22
1442 2255
145 226
1453 227

2338
2351
2355
2358
2366
24

2434
2449
25

2526
2542
2552
2556
2561
2566
2569
2571
2575
2577
2582
2597
2599
26

/proc
2658
2665
2694
27
2718
2724
28
2863
2874
29

301
302
3027
3028
303
3032
3033
304
305
3073
3092
31

$ s
3244
3257
328
329
33
3301
331
334
EELTS
3371
34
3420
35
36
37
3732
3733
3760
3766
3767
38
380
3800

3864
3873
39
40
a1
a2
43
a4
a5
46
a7
477
478
479
48

53
54
55
569
601
646
67

7
700
720
74
740
748
750
753
759
764
796
799

818
820
821
832

916
919
93
94
979

consoles
cpuinfo
crypto
devices
diskstats
dna

driver
execdonains
b
filesystems
fs
interrupts
iomem
ioports

irq
kallsyms
keore

keys
key-users
knsg
kpagecount
kpageflags
loadavg

mtrr

net
pagetypeinfo
partitions
sched_debug
schedstat
scsi

self
slabinfo
softirgs
stat

swaps

sys
sysrq-trigger
sysvipc
thread-self
timer_list
timer_stats
tty

uptime
version
version_signature
vmallocinfo

index-52_1.png
Lehmer@MtHarvard /proc $

MemTota
MemFree
MemAvailable:
Buffers:
Cached:
SwapCached:
Active:
Inactiv
Active(anon) :

Inactive(anon):

Active(file):

Inactive(file):

Unevictable:
Mlocked:
SwapTotal
SwapFre
Dirty:
Writeback:
AnonPages :
Mapped:
Shmem:

Slab:
SReclaimable:

3961516
267008
734792

67776

1668004

22664

2095944

1412528

1727232

1177552
368712
234976

)
0
4108284
4001464
]
]

1750764
902140

1132092
101020

66048

cat meminfo
kB
KB
KB
KB
KB
KB
KB
KB
KB
KB
KB
KB
KB
KB
KB
KB
KB
KB
KB
KB
KB
KB
kB

cover.jpeg
O'REILLY"

Ten Steps to
Linux Survival

James Lehmer

index-42_2.png
root@ubuntu-512mb-nyc3-01:/var/log/apache2# grep '~159.203' access.log

159.

203.76.

269 "o

159.

php

159.

php

159.
P/1.

159

203.76.
HTTP/1.
203.76.
HTTP/1.
203.76.

1" 404

203.76.

HTTP/1.1"

159.

203.76.

HTTP/1.1"

root@ubuntu-512mb-nyc3-01:/var/log/apache2# |

169 - -
169 - - [30/Mar/2016:18:57:57 -0400]
1" 404 485 "-" "-"

169 - - [30/Mar/2016:18:57:57 -0400]
1" 404 485 "-" "-"

169 - - [30/Mar/2016:18:57:57 -0400]
478 ".n von

169 - - [30/Mar/2016:18:57:57 -0400]
404 482 "-" "ot

169 - - [30/Mar/2016:18:57:57 -0400]
404 482 "-" -t

[30/Mar/2016:18:57:57 -0400] "GET

"GET

"GET

"GET

"GET

"GET

/muieblackcat HTTP/1.1" 404
//phpMyAdnin/scripts/setup
//phpnyadnin/scripts/setup
//pma/scripts/setup.php HTT)
//myadnin/scripts/setup.php)

//MyAdnin/scripts/setup.php)

index-42_1.png
root@ubuntu-512mb-nyc3-01:/var/log/apache2# grep

104.

528

/45
104.

528

/45
.166.

104
528

/45
104.

528

/45

166.
o
166.

o

o
166.

o

229.122 - - [29/Mar/2016:20:08:57 -0460]
“"Mozilla/5.0 (X11; Ubuntu; Linux x86_64;

229.122 - - [29/Mar/2016:20:09:15 -0460]
“"Mozilla/5.0 (X11; Ubuntu; Linux x86_64;

229.122 - - [29/Mar/2016:20:32:55 -0400
“"Mozilla/5.0 (X11; Ubuntu; Linux x86_64;

229.122 - - [29/Mar/2016:20:33:45 -0400]
“"Mozilla/5.0 (X11; Ubuntu; Linux x86_64;

root@ubuntu-512mb-nyc3-01:/var/log/apache2# |

"\s500\s' access.log
"GET /crash.php HTTP/1.1" 560 1
rvi45.0) Gecko/20100101 Firefox

"GET /crash.php HTTP/1.1" 560 1
rvi45.0) Gecko/20100101 Firefox

"GET /crash.php HTTP/1.1" 560 1
rvi45.0) Gecko/20100101 Firefox

"GET /crash.php HTTP/1.1" 560 1
rvi45.0) Gecko/20100101 Firefox

index-43_1.png
root@ubuntu-512mb-nyc3-01:~# grep 'bash$' /etc/passwd
root:x:0:0:root:/root:/bin/bash

myuser:x:1000:1000:My User,,
root@ubuntu-512mb-nyc3-01:~# |

home/myuser:/bin/bash

index-72_1.png
UGN PTD-MED-0E=) CRTERDD S

arpd (8)

df (1)

du (1)

e2freefrag (8)
expand (1)
fallocate (1)
futex (7)

growpart (1)
ip-netns (8)
namespace. conf (5)
netlink (7)
pam_namespace (8)
Text::WrapI18N (3pm)
unexpand (1)
unshare (1)

userspace arp daemon.

report file system disk space usage

estimate file space usage

report free space fragmentation information

convert tabs to spaces

preallocate space to a file

fast user-space locking

extend a partition in a partition table to fill availa...
process network namespace management

the namespace configuration file

communication between kernel and user space (AF_NETLINK)
PAM module for configuring namespace for a session

Line wrapping module with support for multibyte, fullw..
convert spaces to tabs

run program with some namespaces unshared from parent

myuser@ubuntu-512mb- nyc3 01:~s i

index-32_1.png
root@ubuntu-512mb-nyc3-01:/var/log/apache2# tail -n 5 access.log
54.186.16.79 - - [01/Apr/2016:18:54:52 -0400] "GET / HTTP/1.1" 200 543 *
11a/5.0 (Windows NT 10.0; WOWG4 4.0) Gecko/20100101 Firefox/44.0"

"Mozi

54.186.16.79 - - [01/Apr/2016 7 -0400] "GET /CHANGELOG.txt HTTP/1.1" 404
470 "-* "Mozilla/5.0 (Windows NT 10.0; WOW64; rv:44.8) Gecko/20100101 Firefox/44
o

54.186.16.79 - - [01/Apr/2016:18:55:02 -0400] "GET / HTTP/1.1" 200 543 " Moz

11a/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48
.0.2564.103 Safari/537.36"

54.186.16.79 - - [01/Apr/2016: 9 -0400] "GET /readme.html HTTP/1.1" 404 4|
8 "-" "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Geckol
) Chrome/48.0.2564.103 Safari/537.36"

185.56.82.99 - - [01/Apr/2016:21:24:55 -0400] "GET / HTTP/1.0" 200 609
can/1.0 (https://github.con/robertdavidgrahan/masscan)"
root@ubuntu-512mb-nyc3-01: /var/log/apache2# ||

"mass|

index-35_1.png
./ufw.log
./apache2/other_vhosts_access.log
./apache2/access. log
./apache2/error.log

./boot . log

- /mysql.
./cloud-init-output.log

-/dpkg. log

. /unattended-upgrades/unattended-upgrades - shutdown. log
./upstart/network-interface-security-network-interface etho.log
./upstart/procps. log

./upstart/network-interface-etho. log
./upstart/network-interface-lo.log

./upstart/systend-logind. log
./upstart/network-interface-security-networking. log
./upstart/ureadahead. log
./upstart/network-interface-security-network-interface lo.log
./alternatives.log

./auth. log

./cloud-init.log

./bootstrap. log

./apt/term.log

/apt/history. log

index-33_1.png
root@ubuntu-512mb-nyc3-01:/var/log/apache2# tail -n 5 -f access.log

54.186.16.79 - - [01/Apr/2016: :52 -0400] "GET / HTTP/1.1" 200 543 "-" "Mozi
11a/5.0 (Windows NT 10.0; WOW64 4.0) Gecko/20100101 Firefox/44.0"
54.186.16.79 - - [01/Apr/2016 7 -0400] "GET /CHANGELOG.txt HTTP/1.1" 404
470 "-* "Mozilla/5.0 (Windows NT 10.0; WOW64; rv:44.8) Gecko/20100101 Firefox/44
o

54.186.16.79 - - [01/Apr/2016:18:55:02 -0400] "GET / HTTP/1.1" 200 543 “-" "Mozi

1la/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48)
.0.2564.103 Safari/537.36"

54.186.16.79 - - [01/Apr/2016: 1 09 -0400] "GET /readme.html HTTP/1.1" 404 46|
8 "-" "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)
) Chrome/48.0.2564.103 Safari/537.36

185.56.82.99 - - [01/Apr/2016 5 -0400] "GET / HTTP/1.0" 200 609 * mass|

can/1.0 (https://github.com/robertdavidgraham/masscan)"
B

index-38_1.png
Jrvuseréubuntu-s12mb-nyc3-01:/var/log$ sudo find . —mmin -1 -print -exec tail -n |8

[2306798.499932] [UFW BLOCK] IN~ech)
0 0UT= MAC=04:01:be:05:75:01:84:b5:9c:£9:08130:08:00 SRC=0.82.78.38 DST=104.236|
1246.137 LEN=40 TOS=0x00 PREC=0x00 TTL=245 ID=54236 PROTO=ICP SPT-40138 DET=8895)
WINDOW=1024 RES=0x00 SYN URGP=0
fapr 23 12:01:50 ubun./syslog
[apx 23 12:14:22 wbuntu-512mb-nyc3-01 kernel: [2307554.325976] [UFW BLOCK] T
0 0UT= MAC=04:01:be:05:75:01:84:b5:9c:£9:18:30:08:00 SRC=151.42.222.102 DS
236.246.137 LEN=60 TOS=0x00 PREC=0x00 TTL=53 ID=680 DF PROTO=ICE SPT=45070 DET
s winDow-se0e RES=0x00 SYN URGP=0
12:15:08 ubuntu-512mb-nyc3-01 kernel: [2307600.380254] [UFW BLOCK] TN-ech)
MAC=04:01:be:05:75:01:84:D5: 901 £9:08:30:08:00 SRC=222.186.58.12 DST=104.2
-137 LEN=20 T0S=./auth.log
12:04:35 ubunvu-512mb-nyc3-01 sshd[24638]: inpur_userauth_request: invalil
linux [preauth]
12:04:35./kern. log
11:52:23 ubuntu-512mb-nyc3-01 kernel: [2306235.335394] [UFW BLOCK] TN-eth)
MAC=04:011be:05:75:01:84:D5: 901 £9:18:30:08:00 SRC=123.30.182.54 DST=104.2
.137 LEN=60 TOS=0x00 PREC=0x00 TTL-52 ID=45080 DF PROTO=ICP SPT=21317 DPT-|
5201 WINDOW=14600 RES=0x00 SYN URGE=0
apx 23 11:54:05 ubuntu-s12mb-nyc3-01 kernel: [230633Smyuser@ubuntu-S12mb-nyc3-01]
:/var/log$ []

index-36_1.png
myuser@ubuntu-512mb-nyc3-01:/var/log$ find . -mmin -60
- /ufu.log

-/astlog

“/penp

- /upstart/systend-logind. log

- rwemp

~Isysiog

~/auth.log

-/xern.log

myuser@ubuntu-512mb-nyc3-01:/var/log$ |

index-3_1.png
OREILLY*®

Programming Newsletter
Get programming related news and content delivered weekly to your inbox.
oreilly.com/programming/newsletter

Free Webcast Series
Learn about popular programming topics from experts live, online.
webcasts.oreilly.com

O'Reilly Radar

Read more insight and analysis about emerging technologies.
radar.oreilly.com

Conferences
Immerse yourself in learning at an upcoming O'Reilly conference.
conferences.oreilly.com

©2015 O'Reilly Media, Inc. The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. #15305

index-39_1.png
/bin/login
/bin/loginctl

/bin/ntfsdump_logfile

/etc/logcheck

/etc/login.defs

/etc/logrotate. conf

/etc/logrotate.d

/etc/rsyslog. conf

/etc/rsyslog.d

/etc/alternatives/rlogin

/etc/alternatives/rlogin. 1.9z
/etc/apache2/conf-available/other-vhosts-access-log. conf
/etc/apache2/conf-enabled/other-vhosts-access-log. conf
/etc/apache2/mods-available/log_debug. load
/etc/apache2/mods-available/log_forensic.load
/etc/apparmor.d/usr.sbin. rsyslogd
/etc/apparmor.d/disable/usr.sbin. rsyslogd
/etc/apparmor.d/local/usr.sbin. rsyslogd
/etc/apt/apt.conf.d/20changelog

/etc/cloud/cloud. cfg.d/05_logging.cfg
/etc/cron.daily/logrotate
/etc/dbus-1/systen.d/org. freedesktop. loginl. conf
/etc/default/rsyslog

index-29_1.png
myuser@ubuntu-512mb-nyc3-01:~$ cat /etc/mtab
/dev/vdal / ext4 rw,errors=remount-ro 0 0

proc /proc proc rw,noexec,nosuid,nodev 0 0

sysfs /sys sysfs rw,noexec,nosuid,nodev 0 0

none /sys/fs/cgroup tmpfs rw 0 @

none /sys/fs/fuse/connections fusectl rw @ ©

none /sys/kernel/debug debugfs rw 0 0

none /sys/kernel/security securityfs rw 0 0

udev /dev devtmpfs rw,mode=0755 0 0

devpts /dev/pts devpts rw,noexec,nosuid,gid=5,mode=0620 0 0

tmpfs /run tmpfs rw,noexec,nosuid,size=10% mode=0755 0 0

none /run/lock tmpfs rw,noexec,nosuid,nodev,size=5242880 0 0

none /run/shm tmpfs rw,nosuid,nodev 0 ©

none /run/user tmpfs rw,noexec,nosuid,nodev,size=104857600,mode=0755 0 0

none /sys/fs/pstore pstore rw 0 0

systemd /sys/fs/cgroup/systemd cgroup rw,noexec,nosuid,nodev,none,name=systemd @
[

myuser@ubuntu-512mb-nyc3-01:~$ [

index-26_1.png
Lehmer@MtHarv:
alternatives.
alternatives.
alternatives.
alternatives.
alternatives.
alternatives.
alternatives.
alternatives.
apt

aptitude
aptitude.l.gz
aptitude.2.gz
auth.log
auth.log.
auth.log.
auth.log.
auth.log.
boot . log
bootstrap.log
btmp

btmp.1
ConsoleKit
cups

BN
@aa

ard
log

Tog.
Tog.
Tog.
Tog.
Tog.
Tog.
Tog.

/var/log $ s

Nobbwii

.9z
.9z
.9z
.9z
.9z
.9z

dnesg. 4.9z
dpkg. log
dpkg.log.1
dpkg.log.2.gz
dpkg.log.3.9z
dpkg.log.4.gz
dpkg.log.5.gz
dpkg.log.6.gz
dpkg.log.7.gz
faillog

fontconfig. log
fsck
gpu-nanager. log
hp

installer

kern. log
kern.log.1
kern.log.2.gz
kern.log.3.gz
kern.log.4.gz
lastlog

Libvirt
1ynis.log

pn-powersave.log.2.9z
pn-powersave. log.3.9z
pn-powersave.log.4.9z
pn-suspend. log
pn-suspend. log. 1
pn-suspend. log.2.gz
pn-suspend. log.3.gz
pn-suspend. log.4.gz
pycentral.log

samba
speech-dispatcher
syslog

syslog.1
syslog.2.9z
syslog.3.9z
syslog.4.9z
syslog.5.9z
syslog.6.9z
syslog.7.9z

udev
unattended-upgrades
upstart

wtmp

index-31_1.png
:/root:/bin/bash

:1:daemon: /usr/sbin: /usr/sbin/nologin

usr/sbin/nologin

usr/sbin/nologin

sync:x:4:65534:sync:/bin: /bin/sync
: usr/sbin/nologin

12:man: /var/cache/man: /usr/sbin/nologin

1p:/var/spool/lpd: /usr/sbin/nologin

:8:mail:/var/mail:/usr/sbin/nologin

var/spool/news: /usr/sbin/nologin

0:10:uucp: /var/spool/uucp: /usr/sbin/nologin

proxy:x:13:13:proxy:/bin:/usr/sbin/nologin

33:33:www-data: /var/waw: /usr/sbin/nologin

34:34:backup: /var/backups: /usr/sbin/nologin

:38:Mailing List Manager:/var/list:/usr/sbin/nologin

ircix:39:39:ircd:/var/run/ircd: /usr/sbin/nologin

gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologi]
n

nobody: x:65534:65534: nobody: /nonexistent: /usr/sbin/nologin

systemd-timesync:x:100:103:systend Time Synchronization,,,:/run/systemd:/bin/fal
se

systemd-network
false

:101:104:systemd Network Management,,,:/run/systemd/neti

bin/

index-2_1.png
OREILLY*®

Programming Newsletter
Get programming related news and content delivered weekly to your inbox.
oreilly.com/programming/newsletter

Free Webcast Series
Learn about popular programming topics from experts live, online.
webcasts.oreilly.com

O'Reilly Radar

Read more insight and analysis about emerging technologies.
radar.oreilly.com

Conferences
Immerse yourself in learning at an upcoming O'Reilly conference.
conferences.oreilly.com

©2015 O'Reilly Media, Inc. The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. #15305

index-66_1.png
myuser@ubuntu-512mb-nyc3-01:~$ ps -A | grep mysql
19855 7 00:00:00 mysqld
myuser@ubuntu-512mb-nyc3-01:~$ [

index-65_4.png
myuser@ubuntu-512mb-nyc3-01:~$ sudo service mysql status
mysql start/running, process 19683
myuser@ubuntu-512mb-nyc3-01:~$ ||

index-67_1.png
myuser@ubuntu-512mb-nyc3-01:/$ sudo du -d 1 -BM

7784 ./usr
™ ./mnt

m ./media

™ .Jetc

m /sty

m ./lost+found
m ./dev

m ./home

65M ./boot

12M ./sbin

4624 ./var

161094 . /tmp

4834 ./lib

10M ./bin

m ./run

oM ./sys

™ ./opt

m ./1ib64

du: cannot access
du: cannot access
du: cannot access
du: cannot access
oM ./proc

./proc/19341/task/19341/fd/4’: No such file or directory
./proc/19341/task/19341/fdinfo/4": No such file or directory
./proc/19341/fd/4": No such file or directory
./proc/19341/fdinfo/4’: No such file or directory

index-66_2.png
myuser@ubuntu-512mb-nyc3-01:/etc/init.d$ sudo ./mysql start
" ./mysql: ERROR: The partition with /var/lib/mysql is too full!
myuser@ubuntu-512mb-nyc3-01: /etc/init.ds |

index-22_1.png
myuser@ubuntu-512mb-nyc3-01:~$ 1s
CorporateSecrets.pdf MyResume.docx mysql.php mysve Passwords.xlsx
myuser@ubuntu-512mb-nyc3-01:~$ ||

index-68_1.png
myuser@ubuntu-512mb-nyc3-01:~$ ps -A | grep mysvc
20330 pts/0 00:00:00 mysvc
myuser@ubuntu-512mb-nyc3-01:~$ ||

index-20_1.png
lehmer@MtHarvard ~ $ sudo cat /var/log/dmesg

We trust you have received the usual lecture from the local System
Administrator. It usually boils down to these three things:

#1) Respect the privacy of others.
#2) Think before you type.
#3) With great power comes great responsibility

[sudo] password for lehmer: ||

index-67_2.png
myuser@ubuntu-512mb-nyc3-61:~$ 1s -1 /tmp
total 16494688

-rw-rw-r-- 1 myuser myuser 16890556416 Apr 2 12:08 delete.me
myuser@ubuntu-512mb-nyc3-01:~$ ||

index-23_1.png
myuser@ubuntu-512mb-nyc3-01:~$ 1s -a
.bash_history MyResume.docx mysve .ssh
CorporateSecrets.pdf mysql.php Passwords . xUsx
myuser@ubuntu-512mb-nyc3-01:~$ ||

index-68_3.png
myuser@ubuntu-512mb-nyc3-01:~$ ps -A | grep mysvc
myuser@ubuntu-512mb-nyc3-01:~$ ||

index-22_2.png
myuser@ubuntu-512mb-nyc3-01:~$ 1s

total 32
-rw-r--r-- 1 myuser
-rw-r--r-- 1 myuser
-rw-r--r-- 1 myuser
-ruxrwx--- 1 myuser

-rw-r--r-- 1 myuser

myuser
myuser
myuser
myuser
myuser

9982 Apr
4027 Apr
2627 Apr

58 Apr
4723 Apr

myuser@ubuntu-512mb-nyc3-01:~$ ||

120
120
120
120
120

:15 CorporateSecrets.pdf
115 MyResume. docx

:15 mysql.php

:15 mysve

:15 Passwords.xlsx

index-68_2.png
myuser@ubuntu-512mb-nyc3-01:~$ kill 20330
[1]+ Terminated ./mysvc
myuser@ubuntu-512mb-nyc3-01:~$ [

index-25_1.png
myuser@ubuntu-512mb-nyc3-01:~$ cd /etc
myuser@ubuntu-512mb-nyc3-01:/etc$ pwd
/etc
myuser@ubuntu-512mb-nyc3-01:/etcs [

index-71_1.png
reboot(8) System Manager's Manual reboot (8

NAME
reboot, halt, poweroff - reboot or stop the system
SYNOPSIS
reboot [OPTION]... [REBOOTCOMMAND]
halt [OPTION]...
poweroff [OPTION]...
DESCRIPTION

These programs allow a system administrator to reboot, halt or poweroff
the system.

when called with --force or when in runlevel @ or 6, this tool invokes
the reboot(2) system call itself (with REBOOTCOMMAND argument passed)
and directly reboots the system. Otherwise this simply invokes the
shutdown(8) tool with the appropriate arguments without passing REBOOT-
COMMAND argument .

Before invoking reboot(2), a shutdown time record is first written to

index-23_2.png
myuser@ubuntu-512mb-nyc3-0:

total 48

drwxr-xr-x
drwxr-xr-x
Sru--
SrWeTeeTe-
SrWeTe T
SrWeTe T
- rWXTWX- - -
rw-r-
drwx-
./.ssh:
total 12
drwx- -

NeRrreRww

2

myuser
root

myuser
myuser
myuser
myuser
myuser
myuser
myuser

myuser

druxr-xr-x 3 myuser

Sru--

- 1 myuser

myuser
root

myuser
myuser
myuser
myuser
myuser
myuser
myuser

myuser
myuser
myuser

:~$ ls -alR

4096
4096

93
9982
4027
2627

58
4723
4096

4096
4096
395

Apr
Mar
Apr
Apr
Apr
Apr
Apr
Apr
Apr

Apr
Apr
Apr

myuser@ubuntu-512mb-nyc3-01:~$ ||

[

[y

20:
e
20:
20:
20:
20:
20:
20:
20:

20:
20:
20:

15

58
17
15
15
15
15
15
08

.bash_history
CorporateSecrets. pdf
MyResume . docx
mysql.php

mysve

Passwords . xUsx

.ssh

08

15
08

authorized keys

index-69_1.png
myuser@ubuntu-512mb-nyc3-01:~$ ps -A | grep 20354
20354 pts/0 00:00:00 mysvc
myuser@ubuntu-512mb-nyc3-01:~$ sudo kill -9 20354
[11+ Killed ./mysvc
myuser@ubuntu-512mb-nyc3-01:~$ [

index-65_3.png
myuser@ubuntu-512mb-nyc3-01:~$ sudo service mysql restart
mysql stop/waiting

mysql start/running, process 19855
myuser@ubuntu-512mb-nyc3-01:~$ ||

index-55_1.png
lehmer@MtHarvard ~ $ ping oreilly.com
PING oreilly.com (199.27.145.64) 56(84) bytes of data.

64 bytes
64 bytes
64 bytes
64 bytes
64 bytes
64 bytes
64 bytes
64 bytes
64 bytes
64 bytes
~C

from
from
from
from
from
from
from
from
from
from

199.
199.
199.
199.
199.
199.
199.
199.
199.
199.

27.
27.
27.
27.
27.
27.
27.
27.
27.
27.

--- oreilly.com ping
10 packets transmitted, 10 received, 0% packet loss, time 9013ms
rtt min/avg/max/mdev
lehmergMtHarvard ~ $ [

145.64: icmp_se
145.64: icmp_se

145.64: icmp_seq=3

145.64: icmp_se

145.64: icmp_se

145.64: icmp_se

145.64: icmp_se

145.64: icmp_se

145.64: icmp_se

145.64: icmp_seq=10 tt1=50 time=79.3 ms

statistics ---

79.398/120.622/435.739/105.258 ms

index-57_1.png
myuser@ubuntu-512mb-nyc3-01:~$ df

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/vdal 20511356 2950652 16495748 16% /

none 4 0 4 0% /sys/fs/cgroup
udev 240040 4 240036 1% /dev

tmpfs 50180 348 49832 1% /run

none 5120 0 5120 0% /run/lock
none 250896 0 250896 0% /run/shm

none 102400 0 102400 0% /run/user

myuser@ubuntu-512mb-nyc3-01:~$ ||

index-55_2.png
lehmer@MtHarvard ~ $ traceroute oreilly.com
traceroute to oreilly.com (199.27.145.65), 30 hops max, 60 byte packets

1 192.168.5.1 (192.168.5.1) 30.524 ms 30.455 ms 101.139 ms

2 192.168.0.1 (192.168.0.1) 142.903 ms 142.925 ms 152.775 ms

3 * mo-65-40-250-1.sta.embarghsd.net (65.40.250.1) 156.046 ms 156.062 ms

4 mo-65-41-101-91.sta.embarghsd.net (65.41.101.91) 156.049 ms 164.383 ms 20
0.681 ms

5 208-110-248-130.centurylink.net (208.110.248.130) 202.431 ms 204.617 ms 2|
05.743 ms

6 bb-kscbmonr-jx9-01-aed.core.centurytel.net (206.51.69.5) 233.785 ms 30.945)

ms 34.123 ms

7 bb-dllstx37-jx9-02-xe-11-1-0.core.centurytel.net (206.51.69.25) 38.617 ms
44.930 ms 105.717 ms

8 * x %

9 dax-edge-03.inet.qwest.net (67.14.2.174) 111.375 ms 126.680 ms 126.114 ms
10 63-235-82-234.dia.static.qwest.net (63.235.82.234) 105.690 ms 106.674 ms
106.620 ms
11 be-15-cr02.dallas.tx.ibone.comcast.net (68.86.83.113) 133.635 ms be-12-cre2|
.dallas.tx.ibone.comcast.net (68.86.82.137) 133.572 ms be-10-cre2.dallas.tx.ibo|
ne.comcast.net (68.86.82.129) 133.602 ms
12 be-11524-cre2.losangeles.ca.ibone.comcast.net (68.86.87.173) 95.079 ms 88
695 ms 113.372 ms
13 be-10915-crol.sunnyvale.ca.ibone.comcast.net (68.86.86.97) 113.339 ms 112
432 ms 112.383 ms

index-59_1.png
myuser@ubuntu-512mb-nyc3-01:/$ sudo du -d 1 -BM

7784 ./usr
™ ./mnt

m ./media

™ .Jetc

m /sty

m ./lost+found
m ./dev

m ./home

65M ./boot

12M ./sbin

4624 ./var

161094 . /tmp

4834 ./lib

10M ./bin

m ./run

oM ./sys

™ ./opt

m ./1ib64

du: cannot access
du: cannot access
du: cannot access
du: cannot access
oM ./proc

./proc/19341/task/19341/fd/4’: No such file or directory
./proc/19341/task/19341/fdinfo/4": No such file or directory
./proc/19341/fd/4": No such file or directory
./proc/19341/fdinfo/4’: No such file or directory

index-58_1.png
myuser@ubuntu-512mb-nyc3-01:~$ df
Filesystem 1K-blocks Used Available Uses
/dev/vdal 20511356 19445352 1048 100%
none 4 0 4 0%
udev 240040 4 240036 1%
tmpfs 50180 348 49832 1%
none 5120 0 5120 0%
none 250896 0 250896 0%
none 102400 0 102400 0%

myuser@ubuntu-512mb-nyc3-01:~$ ||

Mounted on

/
/sys/fs/cgroup
/dev

/run

/run/lock
/run/shm
/run/user

index-62_1.png
lehmer@MtHarvard ~ $ smbclient //mtlindsey/docs$ -U lehmer -c 'prompt;lcd /var/l

og;mput auth.
's password:

Enter lehmer

Tog*;quit’

Domain=[WORKGROUP] 0S=[Unix] Server=[Samba 4.1.6-Ubuntu]

putting file
putting file
putting file
putting file
putting file

auth.log as \auth.log (394.7 kb/s) (average 394.7 kb/s)
auth.log.2.9z as \auth.log.2.gz (755.0 kb/s) (average 407.2 kb/s)
auth.log.4.9z as \auth.log.4.9z (526.9 kb/s) (average 411.7 kb/s)
auth.log.3.9z as \auth.log.3.gz (909.4 kb/s) (average 425.9 kb/s)
auth.log.1 as \auth.log.1 (1861.5 kb/s) (average 618.0 kb/s)

lehmergtHarvard ~ $ |

index-61_1.png
Open V52012 x64 Natiy nmand Prompt

:\Progran Files (x86)\PuIT¢>pscp -» myuser@denol:/var/log/syslog FiNTenp\.
yuser@denol’s password:
vs 10y 181 KB ! 81.9 kB/s ! ETA: 80:00:00 : 100%

\Progran Files (xB6>\PuIT¢>

index-65_2.png
myuser@ubuntu-512mb-nyc3-01:~$ sudo service mysql stop
mysql stop/waiting
myuser@ubuntu-512mb-nyc3-01:~$ ||

index-65_1.png
myuser@ubuntu-512mb-nyc3-01:~$ sudo service mysql start
mysql start/running, process 19683
myuser@ubuntu-512mb-nyc3-01:~$ ||

index-54_1.png
pi@raspberrypi:~ $ ifconfig

etho Link encap:Ethernet HwWaddr b8:27:eb:13:8a:ec
inet addr:192.168.0.2 Bcast:192.168.0.255 Mask:255.255.255.0
inet6 addr: fe8o::fdad:62da:adBe:2acc/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:l
RX packets:2820954 errors:0 dropped:3593 overruns:0 frame:0
TX packets:123494 errors:0 dropped:® overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:412894134 (393.7 MiB) TX bytes:8456865 (8.0 MiB)

o Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr /128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:l
RX packets:36 errors:0 dropped:@ overruns: frame:0
TX packets:36 errors:0 dropped:® overruns:0 carrier:0
collisions:0 txqueuelen:d
RX bytes:10844 (10.5 KiB) TX bytes:10844 (10.5 KiB)

pieraspberrypi:~ $ I

index-53_1.png
lehmer@MtHarvard /proc/3767 $ s

attr cpuset limits
autogroup cwd Loginuid
auxv environ map_files
cgroup exe maps
clear_refs fd mem
cmdline fdinfo mountinfo
comm gid_map mounts
coredump_filter io mountstats

lehmer@MtHarvard /proc/3767 $ |

net

ns

numa_maps
oon_adj
oom_score
oom_score_adj
pagenap
personality

projid_map
root

sched
schedstat
sessionid
setgroups
smaps
stack

stat
statm
status

syscall
task

timers
uid map
wchan

index-11_1.png
myuser@ubuntu-512mb-nyc3-01:~$ cat /etc/mtab
/dev/vdal / ext4 rw,errors=remount-ro 0 0

proc /proc proc rw,noexec,nosuid,nodev 0 0

sysfs /sys sysfs rw,noexec,nosuid,nodev 0 0

none /sys/fs/cgroup tmpfs rw 0 @

none /sys/fs/fuse/connections fusectl rw @ ©

none /sys/kernel/debug debugfs rw 0 0

none /sys/kernel/security securityfs rw 0 0

udev /dev devtmpfs rw,mode=0755 0 0

devpts /dev/pts devpts rw,noexec,nosuid,gid=5,mode=0620 0 0

tmpfs /run tmpfs rw,noexec,nosuid,size=10% mode=0755 0 0

none /run/lock tmpfs rw,noexec,nosuid,nodev,size=5242880 0 0

none /run/shm tmpfs rw,nosuid,nodev 0 ©

none /run/user tmpfs rw,noexec,nosuid,nodev,size=104857600,mode=0755 0 0

none /sys/fs/pstore pstore rw 0 0

systemd /sys/fs/cgroup/systemd cgroup rw,noexec,nosuid,nodev,none,name=systemd @
[

myuser@ubuntu-512mb-nyc3-01:~$ [

index-17_1.png
Category:

Session
Logging

Teminal
Keyboard
Bel
Fealues

Window
Appeatance
Behaviour
Translation
Selection
Colours

Connestion
Data
Pray
Teket
Rlogin

- 55H
Seial

About

Help

PUTTY Configuration ? I

Basic optons for you PuTTY session

Speciy the destination you want to connect to
Host Name o1 [P address) For
myuser@demol| 2

Cornestion ype:

Raw O Teket

Rlogin ¢

Load, save or deete a stored session
Saved Sessions

Default Setings Load

Save

Delete

Close window on e

ways) Never

Orly on clean exit

Open Cancel

index-15_1.png

index-18_2.png
veing usernawe "myuser”.
Jrryuserfaenc’s passvor

index-18_1.png
PUTTY Security Alert

The server's hast key is nat cached in the registry. You

have no guarantee that the server is the computeryou
think itis.

The server's sa2 key fingerprint s

sshorsa 2048 S eBder 761 fBiaficc6207:2c:Mrdd:e 1126
1Fyou trust this hast, hit Yes to add the key to

PUTTY's cache and cany an connecting,

IFyou want ta carry n connecting just once, without
adding the key to the cache, hit No,

1Fyou da not trust this host, hit Cancel to abandon the
connection.

Yes No Cancel Help

index-1_1.jpg
OREILLY®

en Steps to
iNuXx Survival

James Lehmer

index-19_1.png
veing usernawe "myuser”.
fyuserfaenot’s passvora:
Last login: Fridpr 12
fyuserfusuntu-sizm-nyes-01:~§

4:36 2016 from 104.166.229.122

index-1_2.png

