
grep Command Cheat Sheet for Linux
From Ubuntu Free - Get more Linux Cheat Sheets, free!

Search files, match patterns, filter output, and script with confidence.

1. Basics
grep searches input for lines that match a pattern. By default it prints matching lines.

Basic search (case sensitive)

grep "error" /var/log/syslog

Case insensitive

grep -i "error" /var/log/syslog

Search multiple files

grep "timeout" *.log

Read from stdin

dmesg | grep -i "usb"

Show line numbers

grep -n "main" src/*.c

Only show filenames with a match

grep -l "TODO" -R .

Invert match (show non matching lines)

grep -v "^#" config.ini

Tip: If your pattern begins with a dash, use -e to avoid confusion with options: grep -e "--start".

grep stdin case sensitivity line numbers

2. Common flags
-i case insensitive

-v invert match

-r/-R recursive (R follows symlinks)

-n show line numbers

-H/-h force show/hide filenames

-c count matches per file

-l/-L list files with/without matches

-o print only the matching part

-w match whole words

-x match whole lines

-E extended regex, -F fixed strings, -P PCRE (Perl style)

-A/-B/-C context after/before/both

--color=auto colorize matches

--exclude/--include/--exclude-dir filter files and dirs

-Z/--null NUL separator for filenames

-z/--null-data input lines are NUL terminated

-a/-I treat binary as text / ignore binary files

3. Patterns and regex

3.1 Anchors and boundaries

Start and end of line

grep "^ERROR" app.log

grep "timeout$" app.log

Word boundaries (portable)

grep -E "[[:<:]]fail[[:>:]]" app.log

Word boundaries (PCRE)

grep -P "\bfail\b" app.log

3.2 Character classes

POSIX classes

grep -E "[[:digit:]]{3}" data.txt # any 3 digits

grep -E "[[:alpha:]_-]+" names.txt

grep -E "^[[:space:]]+$" file.txt # all whitespace lines

3.3 Quantifiers and groups

Extended regex with -E

grep -E "colou?r" file.txt # color or colour

grep -E "warn(ing)?s?" file.txt

grep -E "(foo|bar|baz)" file.txt

grep -E "ab{2,4}c" file.txt # abb c to abbbc

3.4 Backreferences and lookarounds

Backreference (GNU extension in ERE, widely works)

grep -E "^(.*)\1$" duplicates.txt # repeated substring lines

Lookahead or lookbehind (requires -P)

grep -P "foo(?=\s+bar)" file.txt # foo followed by bar

grep -P "(?<=user=)\w+" config.txt # extract after user=

Use -F for literal strings. It is faster and avoids regex pitfalls.

4. Context and formatting

Show 3 lines after each match

grep -A 3 "panic" kernel.log

Show 2 lines before each match

grep -B 2 "panic" kernel.log

Show 1 line before and after

grep -C 1 "panic" kernel.log

Colorize matches when writing to a terminal

grep --color=auto -n "error" app.log

Pipe to less and preserve color

grep --color=always -n "error" app.log | less -R

5. Files and directories

Recursive search in current directory

grep -R "nginx" .

Recursively search only certain file types

grep -R --include="*.{c,h}" "malloc" src/

Exclude directories or files

grep -R --exclude-dir=".git" --exclude="*.min.js" "TODO" .

Follow symlinks

grep -R "pattern" /path

Ignore binary files

grep -IR "magic-bytes" /opt/data

With find and xargs

Use find to target files, then grep

find . -type f -name "*.log" -print0 | xargs -0 grep -n "fatal"

Handling spaces safely with NUL separators

find /etc -type f -print0 | xargs -0 grep -H "PermitRootLogin"

6. Output control

Only filenames that contain matches

grep -Rl "api_key" .

Only filenames with no matches

grep -RL "strict-transport-security" /etc/nginx/sites-available

Count matches per file

grep -Rc "404" logs/

Print only the matching part of lines

grep -oE "[0-9]{3}" status.log

Suppress filename in output when multiple files are searched

grep -h "pattern" file1 file2

Show filename even for single file

grep -H "pattern" file.txt

Null-terminate filenames for safer piping

grep -Zl "needle" -R . | tr '\0' '\n'

7. Extracting data (emails, IPs, URLs)

Extract IPv4 addresses

grep -oE '\b([0-9]{1,3}\.){3}[0-9]{1,3}\b' access.log

Extract likely email addresses

grep -oE '[[:alnum:]._%+-]+@[[:alnum:].-]+\.[A-Za-z]{2,}' users.txt

Extract http/https URLs

grep -oE 'https?://[^[:space:]]+' page.html

Extract ISO dates (YYYY-MM-DD)

grep -oE '\b[0-9]{4}-[0-9]{2}-[0-9]{2}\b' records.txt

Extract JSON keys

grep -oE '"([A-Za-z0-9_]+)"\s*:' data.json | cut -d'"' -f2

Real world data is messy. Validate with additional tools like awk, jq, or custom scripts.

8. Practical recipes

Logs and observability

Tail logs and highlight errors

tail -f app.log | grep --line-buffered --color=always -E "ERROR|WARN"

Count unique 404 paths

grep " 404 " access.log | awk '{print $7}' | sort | uniq -c | sort -nr | head

Find requests slower than 2s (Nginx combined logs)

awk '$NF > 2 {print}' access.log | grep -n ""

Code search

Find function definitions in C

grep -R --include="*.c" -nE "^[A-Za-z_][A-Za-z0-9_]*\s*\(" src/

TODOs except vendor dir

grep -R --exclude-dir="{vendor,node_modules}" -n "TODO" .

Find strings that look like secrets

grep -R -nE "(api[_-]?key|secret|token|password)" .

System administration

SSH config checks

grep -nE "^(PermitRootLogin|PasswordAuthentication)" /etc/ssh/sshd_config

Kernel messages with USB

dmesg | grep -i "usb"

Services failing recently (journalctl)

journalctl -p err -S -2h | grep -n ""

Pipelines and process lists

Process search excluding the grep process itself

ps aux | grep "[c]hrome"

Network sockets for a process name

ss -tulpn | grep -i "nginx"

Top memory consumers by process name filter

ps aux | grep -i "java" | sort -k4 -nr | head

Multiple patterns

Any of several words

grep -E "urgent|critical|fatal" app.log

Lines containing both foo and bar (order does not matter)

grep -E "foo.*bar|bar.*foo" file.txt

Provide multiple -e options

grep -e "foo" -e "bar" -e "baz" file.txt

Whole word and whole line

Whole word match

grep -w "error" file.txt

Whole line match

grep -x "READY" status.txt

Binary handling

Treat binary as text to search for ASCII fragments

grep -a "PNG" image.png

Ignore binary files entirely when recursing

grep -IR "signature" /path

9. Scripting and exit codes
Exit codes: 0 match found, 1 no match, 2 error.

Simple condition

if grep -q "READY" status.txt; then

 echo "Service is ready"

else

 echo "Not ready"

fi

Fail a script if a forbidden pattern is present

if grep -R -nE "(FIXME|HACK)" src/; then

 echo "Forbidden markers found" >&2

 exit 1

fi

Use -Z for safe piping of filenames with NUL separators

grep -Zl "needle" -R . | while IFS= read -r -d '' f; do

 echo "Found in: $f"

done

Performance sensitive scripting

Use -F for fixed strings and set C locale for speed

LC_ALL=C grep -FR "needle" .

Many patterns from a file

grep -Ff patterns.txt bigfile.txt

Quiet mode in conditions

if grep -qF "needle" file.txt; then

 do_something

fi

10. Performance and safety
Prefer -F for literal strings - it is faster and avoids regex surprises.
Use --include/--exclude to limit file sets in recursive searches.
Locale can impact speed. LC_ALL=C speeds up byte-wise searches for ASCII logs.
Color and paging: --color=always | less -R keeps color in pagers.
Safety: handle filenames with spaces using NUL separators (-Z, -print0, -0).
PCRE with -P can be powerful but may vary by system. Have a fallback using -E where possible.

Be careful with grep -r . at filesystem root. It can be slow and noisy. Limit scope with target directories and --exclude-dir.

11. Quick reference

Task Command

Case insensitive search grep -i "error" file

Recursive search grep -R "pattern" dir/

Whole word grep -w "word" file

Whole line grep -x "exact line" file

Show line numbers grep -n "needle" file

Only filenames with matches grep -l "needle" *

Only the match text grep -oE "re:gex" file

Before/after context grep -B 2 -A 2 "needle" file

Count matches grep -c "needle" file

Fixed strings (fast) grep -F "literal" file

Extended regex grep -E "a|b|c" file

Perl regex grep -P "\bword\b" file

Include specific extensions grep -R --include="*.log" "needle" .

Exclude directory grep -R --exclude-dir=".git" "needle" .

Ignore binary files grep -IR "needle" .

Null-terminated filenames grep -Zl "needle" -R .

12. Troubleshooting
No matches but you expect some: check case sensitivity, quoting, and whether the pattern is interpreted as regex. Try -F.
Unicode characters: ensure your locale is set correctly or use LC_ALL=C for byte-wise matching.
Pattern starts with a dash: use -e like grep -e "--flag".
Filtering grep from pipelines: use the bracket trick grep "[g]rep" to avoid matching the grep process itself.
Slow recursive search: constrain with --include/--exclude, and consider -F when possible.

Want more? Visit Ubuntu Free for more Linux cheat sheets.

Ubuntu Free - practical guides and free cheat sheets for Linux users.

Share this cheat sheet with your team. Feedback helps us improve.

https://www.ubuntufree.com/
https://www.ubuntufree.com/

